• Title/Summary/Keyword: bending cycle test

Search Result 55, Processing Time 0.028 seconds

Thermal Shock Properties of 316 Stainless Steel (316 스테인레스강의 열충격 특성)

  • Lee, Sang-Pill;Kim, Young-Man;Min, Byung-Hyun;Kim, Chang-Ho;Son, In-Soo;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.22-27
    • /
    • 2013
  • The present work dealt with the high temperature thermal shock properties of 316 stainless steels, in conjunction with a detailed analysis of their microstructures. In particular, the effects of the thermal shock temperature difference and thermal shock cycle number on the properties of 316 stainless steels were investigated. A thermal shock test for 316 stainless steel was carried out at thermal shock temperature differences from $300^{\circ}C$ to $1000^{\circ}C$. The cyclic thermal shock test for the 316 stainless steel was performed at a thermal shock temperature difference of $700^{\circ}C$ up to 100 cycles. The characterization of 316 stainless steels was evaluated using an optical microscope and a three-point bending test. Both the microstructure and flexural strength of 316 stainless steels were affected by the high-temperature thermal shock. The flexural strength of 316 stainless steels gradually increased with an increase in the thermal shock temperature difference, accompanied by a growth in the grain size of the microstructure. However, a thermal shock temperature difference of $800^{\circ}C$ produced a decrease in the flexural strength of the 316 stainless steel because of damage to the material surface. The properties of 316 stainless steels greatly depended on the thermal shock cycle number. In other words, the flexural strength of 316 stainless steels decreased with an increase in the thermal shock cycle number, accompanied by a linear growth in the grain size of the microstructure. In particular, the 316 stainless steel had a flexural strength of about 500 MPa at 100 thermal-shock cycles, which corresponded to about 80% of the strength of the as-received materials.

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

Development of Extra High Voltage(400kN) Porcelain Insulator for Transmission Lines (765 kV용 400 kN 현수애자 개발)

  • 최인혁;최장현;이동일;최연규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.348-353
    • /
    • 2003
  • This paper was the research of high voltage suspension insulator (400 [kN]) including pottery stone, feldspar, clay and alumina of 17 [wt%]. The slurry was fabricated after ball milling mixed raw materials. Green compacts were made by the extrusion of jiggering method and were sintered at 1300[$^{\circ}C$] for 50 [min.] in the tunnel kiln. The sintered density was reached to 97% of theoretical density, and the bending strength was 1658 [k $g_{f}$/$\textrm{cm}^2$] and hardness and fracture toughness which was measured by ICL( indentation crack length ) method were 1658 (kgf/$\textrm{cm}^2$) and 27.5 [Gpa], respectively. In measurement of tana and insulation break voltage of 400 (kN) porcelain, tan$\delta$ took some numerical value between 17${\times}$10$_{-3}$ and 61${\times}$10$_{-3}$ and insulation break voltage value was 19.9$\pm$1.4 [㎸/mm]. The test was performed to research whether the shape of pin affect a overvoltage break load or not As a consequence, when a pin was designed a pin diameter 51 [mm] with the bottom form of two-step constructed with straight in the suspension insulator, Insulator showed overvoltage break load 52 [ton] of the highest value and reflected a fine characteristic in aged deterioration test which is one of the accelerated aging test. Also it could be confirmed a fine characteristic through performing the test that electrical property of insulator was established correctly in accordance with IEC 60383-1 standards.s.

The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section (축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동)

  • Song, Sam-Hong;An, Il-Hyeok;Lee, Jeong-Mu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

Mesoscale computational simulation of the mechanical response of reinforced concrete members

  • Wang, Licheng;Bao, Jiuwen
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2015
  • On mesoscopic level, concrete can be treated as a three-phase composite material consisting of mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with the available test results. It is found that the numerical results are in good agreement with the experimental observations, indicating that the model can successfully simulate the failure process of the RC members.

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.

Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working (소성가공에 따른 STS 304L 재료의 기계적 특성 및 피로평가)

  • Shim, Hyun-Bo;Kim, Young-Kyun;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.635-643
    • /
    • 2017
  • The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of $10^6$, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.