• Title/Summary/Keyword: bending connection

Search Result 239, Processing Time 0.019 seconds

Wind-induced fragility assessment of urban trees with structural uncertainties

  • Peng, Yongbo;Wang, Zhiheng;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.45-56
    • /
    • 2018
  • Wind damage of urban trees arises to be a serious issue especially in the typhoon-prone areas. As a family of tree species widely-planted in Southeast China, the structural behaviors of Plane tree is investigated. In order to accommodate the complexities of tree morphology, a fractal theory based finite element modeling method is proposed. On-site measurement of Plane trees is performed for physical definition of structural parameters. It is revealed that modal frequencies of Plane trees distribute in a manner of grouped dense-frequencies; bending is the main mode of structural failure. In conjunction with the probability density evolution method, the fragility assessment of urban trees subjected to wind excitations is then proceeded. Numerical results indicate that small-size segments such as secondary branches feature a relatively higher failure risk in a low wind level, and a relatively lower failure risk in a high wind level owing to windward shrinks. Besides, the trunk of Plane tree is the segment most likely to be damaged than other segments in case of high winds. The failure position tends to occur at the connection between trunk and primary branches, where the logical protections and reinforcement measures can be implemented for mitigating the wind damage.

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.

Development of Split Tees for Gas Steel Pipelines (강재 가스배관용 분기티의 개발 연구)

  • Kim Young Gyu;Noh Ou Sun;Kim Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.6-12
    • /
    • 2000
  • We have developed a new split tee which can be used to effectively branch into a main gas steel pipelines without losing any gas pressure or having to shut down a line. The split tee has been designed considering the locations of branch connection to the pipelines. Therefore, we could keep the depth of buried pipelines which used to be the problem of the conventional split tees. Test results of the developed split tee showed that the performance of the tightness, hydraulic strength, sealing, welding, bending, and compatibility were excellent. The application of the split tee can provide the advantage of eliminating cost and time, and easy field pipeline coatings.

  • PDF

Parametric Study on the Structural Characteristics of Extradosed PSC Box Girder Bridges (매개변수해석을 통한 Extradosed PSC 박스 거더교의 구조특성 분석)

  • Chung, Jee-Seung;Jeon, Jun-Chang;Park, Jin-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.74-80
    • /
    • 2016
  • In this paper, structural characteristics for an extradosed prestressed concrete box girder bridge are investigated in terms of selective parameters. These parameters are mainly associated with the structural details of the extradosed bridge and derived from currently available literatures regarding previous design drawings. The analyses have been carried out using general-purpose structural analysis program, RM-Space Frame. The parameters evaluated for the present study represent the most salient features of the extradosed bridge and are as follows; 1) span length ratio(side-span length to center-span length), 2) boundary condition of girder, 3) height of pylon, 4) anchorage location of external cables and 5) girder stiffness. The analytical predictions indicate that span length ratio and pylon height are reasonably adequate in the range of 0.55 to 0.60 and $L_m/8$ to $L_m/12$ respectively for the bridge under consideration. Also, demonstrated is the boundary condition of girder, in which rigid-connection details give more efficiency than the continuous details. In addition, considering structural characteristics of the extradosed bridge, it is desirable that the girder stiffness should be determined by the stress range of external cables rather than bending moment of girder.

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

A Study on Representation of 3D Virtual Fabric Simulation with Drape Image Analysis II - Focus on the Comparison between Real Clothing and 3D Virtual Clothing -

  • Lee, Min-Jeong;Sohn, Hee-Soon;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.3
    • /
    • pp.97-111
    • /
    • 2011
  • This study aims to apply 3D virtual fabric parameters - as obtained from previous research experiments - to 3D virtual clothing simulation in comparing its similarity with actual clothing as worn, with a view to verifying the objectivity and validity of the 3D virtual fabric simulation method devised by the drape image analysis method. In addition, the result is intended to be used as the basic data for new 3D virtual clothing simulation methods. As the results, 3D virtual fabric parameters designed to simulate 3D drape to be similar to actual fabrics were found to be Bending Strength, Buckling Point, Density, Particle Distance, and Shear. They were also found to be important measurements when evaluating visual similarity between drape shadow images and number of nodes. 3D virtual fabric simulation method devised by the drape image analysis method was appropriate in extracting 3D fabric parameters with the reflection of actual fabrics' physical and dynamic characteristics, in connection with 3D virtual fabric simulation. 3D virtual fabric parameters with the reflection of actual fabrics' physical and dynamic characteristics using the proposed 3D virtual fabric simulation method are accumulated and provided as a standard, this will facilitate the introduction 3D virtual fabric simulation technology.

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF

Effect of local small diameter stud connectors on behavior of partially encased composite beams

  • Nguyen, Giang Bergerova;Machacek, Josef
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.251-266
    • /
    • 2016
  • The paper combines two distinct parts. First the behavior of welded headed studs with small diameters of 10 and 13 mm acting as shear connectors (which are not embraced in current standards) is studied. Based on standard push tests the load-slip relationships and strengths are evaluated. While the current standard (Eurocode 4 and AISC) formulas used for such studs give reasonable but too conservative strengths, less conservative and full load-slip rigidities are evaluated and recommended for a subsequent investigation or design. In the second part of the paper the partially encased beams under bending are analyzed. Following former experiments showing rather indistinct role of studs used for shear connection in such beams their role is studied. Numerical model employing ANSYS software is presented and validated using former experimental data. Subsequent parametric studies investigate the longitudinal shear between steel and concrete parts of the beams with respect to friction at the steel and concrete interface and contribution of studs with small diameters required predominantly for assembly stages (concreting). Substantial influence of the friction and effect of concrete confinement was observed with rather less noticeable contribution of the studs. Distribution of the longitudinal shear and its sharing between friction and studs is presented with concluding remarks.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.