• 제목/요약/키워드: bending and shear strength

검색결과 427건 처리시간 0.029초

Evaluation of Physical and Mechanical Properties of Non-certificated Laminated Veneer Lumber (LVL) Circulated in Domestic Lumber Market

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.429-436
    • /
    • 2011
  • The selected physical and mechanical properties of non-certificated LVL circulated in domestic lumber market were investigated and compared to relevant standards. The tested LVL passed the moisture content and the soaking delamination rate limit as per domestic (KS) and Japanese standard (JAS). The evaluated mechanical properties were flatwise/edgewise bending strength, modulus of elasticity (MOE), horizontal shear and compressive strength. The 30 mm-thick LVL showed significantly higher bending strength than that of the 25 mm-thick LVL. The modulus of elasticity (MOE) showed same tendency in the results of bending strength. The edgewise bending strength and MOE were higher than that of flatwise bending strength and MOE. The horizontal shear strength values were also showed similar results to bending strength values. The tested results were compared each other and each products were graded according to JAS 701 grade specification. The failure mode of LVL in bending test showed the similar failure mode of solidwood that failed in a simple tension manner (splintery tension). The glue line failure was severe in 25 mm-thick specimens due to concentration of shear stress in layer discontinuity containing small voids and starved glue lines. In horizontal shear strength test, failure mode of LVL showed the typical horizontal shear failure. Compressive specimens failed with fiber crushing in company with apparent delamination that splitted along the length of the specimens. From the results, the complete bonding between lamination and consistency in thin veneer layer were considered as a critical factor in the mechanical properties of LVL. Moreover, the standard test procedure and specification for non-certificated LVL should be required to check the performance of uncertificated materials.

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

전단스팬비를 고려한 철근콘크리트 보의 전단강도 예측에 관한 연구 (A Study on the Shear Strength Prediction of Reinforced Concrete Beams Considering Shear Span Ratio)

  • 김상우;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.885-890
    • /
    • 2001
  • For the shear strength prediction of reinforced concrete beams, this paper considered the bending moment effect. Experimental results of the thirty-seven reinforced concrete beams were compared with analytical results by the FA-STM, TATM and TATM considered bending moment effect. While Ratios of test results to analytical results by using the truss models does not considered the bending moment effect decreased as shear span ratio increased, those by using the proposed method considered that were almost constant regardless of the increase of the shear span ratio. Predicted results obtained from proposed method agreed well with the experimental results.

  • PDF

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

Strength and deflection prediction of double-curvature reinforced concrete squat walls

  • Bali, Ika;Hwang, Shyh-Jiann
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.501-521
    • /
    • 2007
  • This study presents a model to better understand the shear behavior of reinforced concrete walls subjected to lateral load. The scope of the study is limited to squat walls with height to length ratios not exceeding two, deformed in a double-curvature shape. This study is based on limited knowledge of the shear behavior of low-rise shear walls subjected to double-curvature bending. In this study, the wall ultimate strength is defined as the smaller of flexural and shear strengths. The flexural strength is calculated using a strength-of-material analysis, and the shear strength is predicted according to the softened strut-and-tie model. The corresponding lateral deflection of the walls is estimated by superposition of its flexibility sources of bending, shear and slip. The calculated results of the proposed procedure correlate reasonably well with previously reported experimental results.

5점 휨하중 시험법을 사용한 구조용 판넬의 굴림전단강도 (Planar (Rolling) Shear Strength of Structural Panels Using 5-point Bending Test)

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권5호
    • /
    • pp.425-436
    • /
    • 2018
  • 본 연구는 ASTM D2718의 5점 휨하중 시험법을 사용하여 OSB(oriented strand board)와 국산합판의 굴림전단성능을 평가하기 위하여 수행되었다. 각 시험용 판넬에 대해 길이방향에 평행한 것과 수직인 시험편을 제작하여 각각 시험하였으며, 파괴양상을 관찰하였다. 시험 결과 굴림전단력은 강축방향에 평행한 경우 $1.32-1.938N/mm^2$, 강축방향에 수직인 경우 $1.46-1.99N/mm^2$ 정도로 나타났으며 방향에 따른 차이는 크게 나타나지 않았다. 국산합판은 길이방향에 평행한 경우는 캐나다산 OSB와, 수직인 경우는 칠레산 OSB와 통계적으로 차이가 나타나지 않았다. 파괴는 OSB에서는 모두 전단에 의한 파괴가 나타났으며, 합판의 경우에는 전단, 접착층의 박리, 휨과 전단에 의한 복합파괴가 관찰되었다.

격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가 (Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint)

  • 신현섭;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.38-47
    • /
    • 2013
  • 프리캐스트 방식에 의해 제작이 가능한 격자형 강합성 바닥판의 이음부로서 콘크리트 전단키와 고장력볼트 체결로 구성된 조립식 이음부가 제안된 바 있다. 본 연구에서는 콘크리트 전단키와 고장력볼트로 구성된 이음부의 휨강성과 휨강도를 향상시키고자 단면상세를 개선하였고, 구조실험을 통해 얻은 결과를 기존 볼트체결 이음부와 비교 분석하였다. 비교분석 결과에 의하면, 전단스터드와 가외철근에 의한 이음부 콘크리트 보강으로 뚜렷한 전단균열 감소효과가 있었다. 모멘트-곡률 관계로부터 구한 휨강성을 서로 비교해 본 결과, 단면개선 전의 이음부에 비해 약 47% 정도 휨강성이 증가한 것을 알 수 있었다. 또한, 휨강도 비교결과에 의하면 개선된 이음부의 휨강도는 개선 전에 비해 약 32% 증가하였다. 개선된 이음부의 휨성능을 이음부가 없는 단면과 비교하면, 휨강도의 경우 동등 수준 이상이었으나, 휨강성의 경우는 약 37% 정도 더 작은 것으로 분석되었다.

HPFRCC Beam 부재의 전단거동에 관한 실험적 연구 (Experimental Study on Shear Behavior of HPFRCC Beam)

  • 송태화;이성철;신경준;장승필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.289-292
    • /
    • 2006
  • In this research, bending shear test of HPFRCC beams is conducted to obtain the shear strength of HPFRCC beams. Parameters are ratio of volume percentage of fibers. Also, the uniaxial tensile test of HPFRCC is conducted to obtain the tensile cracking stress of each parameters. From the uniaxial tensile test result, the shear strength of HPFRCC beams can be calculated by using the preexisting shear analysis model. Then, the shear strengths of bending shear test result and analysis result are compared.

  • PDF