• 제목/요약/키워드: bending and compressive strength properties

검색결과 209건 처리시간 0.022초

유리섬유의 배향에 따른 전기절연용 FRP의 강도특성 (Mechanical Properties of Insulator FRP Rod According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;표현동;김태옥
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.321-327
    • /
    • 2000
  • FRP has been used very much as high strength and electrical insulation materials. The fiber contributes the high strength and modulus to the composite. The main roles of the matrix in composite materials like FRP are to transmit and distribute stresses among the individual fibers. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, compressive and bending stresses of FRP rods were simulated and measured according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method to give fiber orientation to the FRP. The shear stresses had great effect on the strength of FRP although the stress of parallel direction of FRP was much higher. The tendency of compressive and bending strengths with glass fiber orientation was different each other.

  • PDF

폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber)

  • 전형순
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.

Bentonite와 폴리에틸렌을 이용한 復合材의 機械的 性質 (Mechanical Properties of Bentonite-Polyethylene Composites)

  • 문탁진;한기철
    • 대한화학회지
    • /
    • 제21권5호
    • /
    • pp.379-383
    • /
    • 1977
  • 친유기성 bentonite가 고분자 물질중에서 잘 분산된다는 성질을 이용하여 고분자 물질과 bentonite의 복합재를 제조하고 그 기계적 성질에 관해서 연구하였다. Bentonite는 고분자 물질내에서 분산과 결합이 좋아지도록 imidazoline으로 처리한 후 충진제를 사용하였다. 고분자 물질인 polyethylene은 입도가 100mesh인 것을 사용하였고 친유기성 bentonite 즉 bentone은 입도가 250mesh인 것을 실험에 사용하였다. 분말의 혼합에는 V형 혼합기를 사용하였으며 Banbury mixer로 용융 혼합 시켰다. 시편의 모양은 plate press에 시료를 놓고 열을 가하여 판상으로 제작하였다. 물성을 조사하기 위하여 인장 강도, 곡 강도, 그리고 압축 강도 시험을 하였다. 인장 강도, 연신율, 곡 강도, 그리고 일정한 하중에 대한 굴곡율은 충진제 증가에 따라 감소되었다. 또한 압축 강도는 충진제 증가에 따라 크게 증가 하였다.

  • PDF

고성능 경량 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of High Performance Lightweight Polymer Concrete)

  • 성찬용
    • 한국농공학회지
    • /
    • 제37권3_4호
    • /
    • pp.72-81
    • /
    • 1995
  • This study was performed to evaluate the mechanical properties of high performance lightweight polymer concrete using fillers and synthetic lightweight coarse aggregate. The following conclusions were drawn. 1. The unit weight of the G3, G4 and G5 concrete was 1.500t/m$^3$, 1.506t/m$^3$ and 1.535t/m$^3$, respectively. Specially, the unit weights of those concrete were decreased 33~35% than that of the normal cement concrete. 2. The highest strength was achieved by heavy calcium carbonate, it was increased 27% by compressive, 95% by tensile and 195% by bending strength than that of the normal cement concrete, respectively. 3. The elastic modulus was in the range of 8.0 x 104~ 10.4 x lO4kg/cm2, which was approximately 35~42% of that of the normal cement concrete. Normal cement concrete was showed relatively higher elastic modulus. 4. The ultrasonic pulse velocity of fillers was in the range of 2, 900m/sec, which was showed about the same compared to that of the normal cement concrete. Heavy calcium carbonate was showed higher pulse velocity. 5. The compressive, tensile, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight.

  • PDF

친환경 황토 고화재를 사용한 황토 모르타르의 강도 특성 (Strength Properties of Loess Mortar Using Eco-friendly Loess Binder)

  • 이승한;정용욱;장석수;여인동;최종오
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.285-286
    • /
    • 2010
  • 본 연구는 기존 황토 자전거도로에서 발생하고 있는 압축강도 저감에 따른 패임현상을 해결하기 위하여 비(非) 시멘트계 고화재를 사용한 황토 모르타르의 유동성, 압축강도 및 휨 강도 특성을 평가하는데 그 목적을 두었다.

  • PDF

산불 피해 소나무재의 역학적 특성 및 급속오븐 건조특성 (Mechanical and Oven-drying Characteristics of Pinus densiflora Wood Damaged by Forest Fire)

  • 황원중;권구중;박종수;김남훈
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권4호
    • /
    • pp.57-62
    • /
    • 2003
  • 본 연구에서는 산불 피해 소나무재의 이용을 위한 기초자료를 얻고자 역학적 및 건조 특성을 조사하였다. 산불피해재는 종압축 특성, 전단강도, 충격휨흡수에너지 등에서 건전재와 거의 유사한 결과를 보여주었으며, 산불피해재 변재부의 휨특성은 건전재보다 양호하게 나타났다. 건전재와 산불피해재 변재부의 생재함수율은 산불피해재가 다소 낮았으나, 건조속도는 거의 차이가 없었다. 건조시 발생되는 초기할렬은 건전재가 산불피해재보다 발생율이 높았고, 내부할렬은 건전재와 산불피해재에서 발생되지 않았다. 따라서 산불에 의해 피해를 입은 목재의 대부분은 수피부를 제거하여 이용할 경우 건전재와 거의 동일한 용도로서 사용이 가능할 것으로 생각된다.

폐목질을 사용한 모르터의 강도특성에 관한 실험적 연구 (A Experimental Study on Strength Properties of Mortar using Waste Wood)

  • 황병준;공민호;정근호;김성식;이영도;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.73.1-76
    • /
    • 2003
  • Recently, as the alternatives to preserve environment such as effective usage of wastes or unusable resources are drawing attentions, researches and measures for the two tasks, which are reuse of waste wood and development of eco-friendly materials, are being examined and established in various fields. However, they are still insufficient. Therefore, in this study, for the efficient application of waste woods and eco-friendly effects, mortar was produced using sawdust as the waste wood and mineral material cement for combination, in order to produce inorganic boards using waste woods. which were made when sawing. This study attempted to suggest a basic material about the physical properties of mortar, which used waste woods, after examining the features of wood mixture rate, water-cement rate, consolation according to the mixture rate of the setting accelerator, specific gravity, compression intensity, and bending intensity as experiment factors.

  • PDF

고온 열기 처리에 의한 낙엽송재의 물리·역학적 성능 및 내부후성능 변화 고찰 (Evaluation of Physico-Mechanical Properties and Durability of Larix kaempferi Wood Heat-Treated by Hot Air)

  • 박용건;한연중;박준호;장윤성;양상윤;정현우;김경중;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권3호
    • /
    • pp.334-343
    • /
    • 2015
  • 본 연구에서는 국내에서 상업적으로 이용되고 있는 국산 낙엽송 열처리재의 여러 가지 물성(밀도, 평형함수율, 수축률, 흡습/흡수성, 종/횡압축강도, 휨강도, 경도, 내부후성능)을 정량적으로 평가하기 위하여 수행되었다. 고온처리에 의해 목재의 소수성이 증가함에 따라 평형함수율이 감소하였다. 이에 따라 수축률 및 흡습/흡수성이 감소하여 치수안정성이 개선되었고, 낮은 함수율의 영향으로 압축강도가 증가하였으며, 목재 주성분의 변화와 낮은 함수율의 영향으로 내부후성능이 개선되었다. 하지만 열처리에 의해 밀도와 휨강도 및 경도는 감소하였다.

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

Prediction of Hybrid fibre-added concrete strength using artificial neural networks

  • Demir, Ali
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.503-514
    • /
    • 2015
  • Fibre-added concretes are frequently used in large site applications such as slab and airports as well as in bearing system elements or prefabricated elements. It is very difficult to determine the mechanical properties of the fibre-added concretes by experimental methods in situ. The purpose of this study is to develop an artificial neural network (ANN) model in order to predict the compressive and bending strengths of hybrid fibre-added and non-added concretes. The strengths have been predicted by means of the data that has been obtained from destructive (DT) and non-destructive tests (NDT) on the samples. NDTs are ultrasonic pulse velocity (UPV) and Rebound Hammer Tests (RH). 105 pieces of cylinder samples with a dimension of $150{\times}300mm$, 105 pieces of bending samples with a dimension of $100{\times}100{\times}400mm$ have been manufactured. The first set has been manufactured without fibre addition, the second set with the addition of %0.5 polypropylene and %0.5 steel fibre in terms of volume, and the third set with the addition of %0.5 polypropylene, %1 steel fibre. The water/cement (w/c) ratio of samples parametrically varies between 0.3-0.9. The experimentally measured compressive and bending strengths have been compared with predicted results by use of ANN method.