• Title/Summary/Keyword: bedded sandstone

Search Result 6, Processing Time 0.026 seconds

Thin-bedded, Fine-grained Lacustrine Turbidite Facies on the Northern Coast of Jindo and the Adjacent Area: Density underflow-induced, Ash-rich Turbidity Current Deposits

  • Chang Tae Soo;Chun Seung Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.29-37
    • /
    • 1998
  • The sedimentary succession on the northern coast of Jindo and the adjacent area comprises the thinly bedded, fine-grained deposits of an epiclastic sandstone, siltstone, black shale/mudstone, and cherty mudstone (ca. 200m in vertical thickness), which are interpreted as the finely stratified turbidites mainly by density underflow-induced currents. Most deposits can be divided into eight facies: thin-bedded, ash-rich massive sandstone layer (mS), graded and laminated mudstone layer (glM), graded mudstone layer with ripple lamination (rM), laminated and graded siltstone layer (lgZ), finely laminated black shale layer (IBS), structureless mudstone layer (mM), thin-bedded cherty mudstone layer (lCM), and contorted and laminated mudstone layer (dlM), The thin-bedded, ash-rich sandstone facies is interpreted to be deposited from high-density turbid underflows during a relatively large flooding. Most thinly bedded mudstone facies would be deposited from low-density turbid underflows (turbidity currents) with some different hydrodynamic condition and sediment concentration during the high discharge of river water. Whereas the structureless mudstone facies may result from raining down of suspended sediment intermittently supplied by overflows and interflows. From the entire succession, graded and laminated mudstone layers interbedded with thin-bedded, ash-rich massive sandstone are dominant in the lower part of the succession, and graded mudstone layers with ripple lamination ripple lamination occur mainly in the middle part of it. On the other hand, iaminated/raded siltstone and contorted/laminated mudstone layers prevail in the upper part. The transition of facies association is suggestive of the continuous change of main depositional setting from basin plain to lower slope, which could be due to the movement of depocenter by the increase of sediment supply (volcanic activity).

  • PDF

Facies Analysis of the Early Mesozoic Hajo Formation in the Chungnam Basin, Boryeong, Korea (보령지역 충남 분지 중생대 초기 하조층의 퇴적상 분석)

  • Lee, Sin-Woo;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.18-35
    • /
    • 2010
  • Facies analysis of the Late Triassic Hajo Formation, the lowest stratigraphic unit in the Chungnam Basin, shows that the lower part is composed mainly of breccias or conglomerates; the middle part, conglomerates; and the upper part, conglomerates and sandstones. The formation consists of 13 facies, which include horizontally stratified clastsupported conglomerate, clast-supported massive breccia, matrix-supported massive breccia or conglomerate, matrixsupported graded conglomerate, massive pebbly sandstone, horizontally laminated sandstone, massive sandstone, graded sandstone, inversely graded sandstone, planar cross-bedded sandstone, trough cross-bedded sandstone, low angle crossbedded sandstone, and massive mudstone. These are grouped into 4 facies associations (FA). FA I consisted of clastsupported and matrix-supported massive breccias presumably deposited in the talus or upper fan delta environment. FA II consists of matrix-supported massive conglomerate and horizontally stratified clast-supported conglomerate of cobble size and it seems to have been deposited in the upper fan delta environment. FAIII consisted of matrix-supported massive conglomerate of pebble size, horizontally laminated sandstone and massive sandstone may have been deposited in the middle fan delta environment. FAIV consists of massive pebbly sandstone, horizontally laminated sandstone and massive sandstone and presumably was deposited in the lower fan delta environment. In general the Hajo Formation is interpreted to have been deposited at the talus/upper fan delta environment in early stage; it might have been deposited in the alternating environments of upper and middle fan delta in middle stage; and it seems to have been deposited in alternating environments of middle and lower fan delta in late stage.

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

Dinosaur Track-Bearing Deposits at Petroglyphs of Bangudae Terrace in Daegokcheon Stream, Ulju (National Treasure No. 285): Occurrences, Paleoenvironments, and Significance in Natural history (국보 제285호 울주 대곡리 반구대 암각화 지역의 공룡발자국 화석층 : 산상, 고환경 및 자연사적 가치)

  • Kim, Hyun Joo;Paik, In Sung;Lim, Jong-Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.2
    • /
    • pp.46-67
    • /
    • 2014
  • The Dinosaur track-bearing deposits recently found at Bangudae Petroglyph site in Ulju (National Treasure No. 285) have been studied in the aspects of sedimentology, paleoenvironments, and significance in natural history. The dinosaur tracks occur in the Daegu Formation (late Early Cretaceous), and over 80 footprints including 43 ornithopod footprints, 36 sauropod footprints, and 2 theropod footprints are preserved in this tracksite. The track-bearing deposits consist of irregularly interlaminated siltstone and mudstone, calcareous sandy to silty mudstone, thin-bedded tuffaceous sandstone, planar- to cross-laminated sandstone, and thin- to medium-bedded graded sandstone, and they are interpreted to be sheetflood deposits on an alluvial plain. Diverse types of ripples and mudcracks, rainprints, and invertebrate trace fossils are observed in these deposits, and the crest-lines of wave ripples do not show preferred orientation. Dinosaur footprints occur as true prints, underprints, overtracks, and casts on the bedding surfaces, and the orientation of trackways are scattered. It is interpreted that paleoclimatic condition of the track-bearing deposits were semiarid with alternation of wetting and drying periods, and that dinosaurs frequented small and shallow ponds during wetting periods and recorded their tracks on an alluvial plain. The frequent occurrence of dinosaur tracks in study area indicates that the Cretaceous deposits around Daegokcheon Stream are very useful sedimentological and paleontological records to understand the paleoecology and paleoenvironments during the dinosaur age in Korean Peninsula. Consequently the dinosaur track-bearing deposits around Daegokcheon Stream should be further studied in sedimentary geology and paleontology in order to enhance cultural heritage value of the Petroglyphs of Bangudae Terrace as the World Heritage.

A Study on Geology of Clay Mineral Deposits of Pohang-Ulsan Area and their Physico-Chemical Properties (포항-울산간의 점토자원의 지질과 그 물리화학적 특성에 관한 연구)

  • Kim, Ok Joon;Lee, Ha Young;Kim, Suh Woon;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.167-215
    • /
    • 1971
  • I. Purpose and Importance of the Study The purpose of the present study is to clarify to geological, mineralogical, and physico-chemical properties of the clay minerals deposits imbedded in the Tertiary sediments in the areas between. Pohang and Ulsan along southeastern coastal region of Korea. These clays are being mined and utilized for filter and insecticide after activation or simple pulverizing, nontheless activated clays are short coming as chemical industry in Korea has been rapidly grown in recent years. In spite of such increase in clay demand, no goological investigation on clay deposits nor physico-chemical properties of the clays have been carried out up to date. Consequently activated clays produced in Korea is not only of low grade but also of shortage in supply, so that Korea has to import activated clays of better grade. The importance of the present study lies, therefore, on that guiding principle could be laid down by knowing stratigraphical horizons, of clay deposits and fundamental data of improving grade of activated clays might be derived from the results of physico-chemical examinations. II. Contents and Scope of the study The contents of the study are pinpointed down in the following two subjects: 1) General geological investigation of Tertiary formations distributed in the areas between Pohang and UIsan, and detail geological study of the bentonitic clay deposits imbedded in them. 2) To clarifty physico-chemical characteristics of the clays by means of chemical analysis, X-ray diffraction and electron microscope. The scope of the study involves the following there points: i) Regional geological investigation-This investigation has been carried out in order to find out the distribution of Tertiary sediments and exact location of clay mineral deposits in the areas between Pohang and UIsan. ii) Detail geological investigation-This has been concentrated in and around the clay deposits which. had been found out by the regional investigation. iii) Laboratory researchs include i) age determination and correlation of Tertiary sediments by paleontological study, and ii) Chemical analysis, X-ray diffraction, and electron microscopic studies on clays, samples taken from various clay deposits. III. Research Results and Suggestions 1) The geology of the area investigated is composed mainly of Janggi and Beomgokri groups of Miocene age in ascending order rested on the upper Silla system, Balkuksa granite and volcanic rocks of upper Cretaceous age as base. 2) Janggi group is composed in ascending order of Janggi conglomerate, Nultaeri rhyolitic tuff, Keumkwangdong shale, two beds of lignite-bearing formations which consist of alternation of conglomerate, sandstone and mudstone, and andesitic, rhyolitic, and basaltic tuff beds. 3) Beomgokri group is mainly composed of andesitic to rhyolitic tuff interlayered by conglomerate and tuffaceous sandstone. In the areas around boundary between North-and South Kyeongsang-do is distributed Haseori farmation which is composed of conglomerate, sandstone, mudstone and andesitic to rhyolitic tuff, and which is correlated to Eoilri formation of Janggi group. 4) Clay deposits of the area are interbedded in Eoilri, Haseori, Nultaeri tuff, Keumkwangdong shale, upper and lower horizon of the lower lignite-bearing seam, and Keumori rhyolitic tuff formations of Janggi group; and are genetically classi.fied into four categories, that is, i) those derived from volcanic ash beds(Haseori and Daeanri deposits), ii) those of secondary residual type from rhyolitic tuff beds(Seokupri deposits), iii) Clay beds above and beneath the lignite seams, (Janggi and Keumkwangdong deposits), and iv) those derived from rhyolitic tuff beds(Sangjeong and Tonghae deposits). 5) Mineral constituents of clay deposits are, according to X-ray diffraction, montmorillonite accompanied in different degree by cristobalite, plagioclase, quartz, stilbite, and halloysite in rare occasion. The clays are grouped according to mineral composition into four types; i) those consist mostly of montmorillonite, ii) those composed of montmorillonite and cristobalite, iii) those composed of montmorillonite and plagioclase, and iv) those composed of montmorillonite, plagioclase and quartz. 6) Clays interbedded in Haseori formation and vicinity of lignite seams belong to the first type, are of good quality and derived either from volcanic ash bed, or primary clay beds near lignite seams. Clays belonged to other types are derived from weathering of rhyolitic tuff formations and their quality varies depending upon original composition and degree of weathering. Few clays in secondary residual type contain small amount of halloysite. 7) Judging from analytical data, content of silica($SiO_2$) varies proportionally with content of cristobalite, and alumina($Al_2O_3$) content does not vary with that of plagioclase, but increases in the sedimentary bedded type of deposits. 8) It is unknown whether or not these days could be upgraded by beneficiation since no grain size of these impurities nor beneficiation test had been studied. 9) Clay beds derived from valcanic ash layers or sedimentary layers at the vicinity of lignite seams are thin in thickness and of small, discontinueous lenticular shape, although they are of good quality; and those derived from rhyolitic tuff formations or residual type from tuff are irregular in both occurrence and quality. It is, therefore, not only very difficult but also meaningless to calculate its reserve, and reserve estimation, even if done, will greatly be deviated from practically minable one. Consequently, way of discovery and exploitation of clay deposits in the area under consideration is to check the geologically favorable areas whenever needed.

  • PDF

Dinosaur Tracksite at Jeori, Geumseongmyeon, Euiseonggun, Gyeongsangbukdo, Korea(National Monument No. 373) - Occurrences, Significance in Natural History, and Preservation Plan - (경북 의성군 금성면 제오리 공룡발자국화석 산지(천연기념물 제373호) - 산상, 자연사적 가치 및 보존 방안 -)

  • Paik, In Sung;Kim, Hyun Joo;Kang, Hee Cheol;Lim, Jong-Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.268-289
    • /
    • 2013
  • The Dinosaur tracksite at Jeori, Geumseongmyeon, Euiseonggun, Gyeongsangbukdo, Korea (National Monument No. 373) has been studied in the aspects of location, stratigraphy, sedimentology, fossil occurrence, unique geological records, literature, significance in natural history, preservation, and management. On the basis of these features, the Jeori tracksite has been assessed semiquantitavely. The Jeori tracksite occurs in the Sagok Formation (Albian) of the Euiseong sub-basin, and over 300 footprints forming 12 sauropod trackways, 10 ornithopod trackways, and 1 theropod trackways are preserved in this tracksite. The track-bearing deposits consist of tabular-bedded medium- to fine-grained arkose with mudstone drape, interlaminated fine-grained sandstone to siltstone and mudstone, and shaly mudstone. The dinosaur tracks are preserved in the interlaminated fine-grained sandstone to siltstone and mudstone, and most of them are observed as underprints. The track-bearing deposits are interpreted as sheetflood deposits on the floodplain under a seasonal paleoclimatic condition with alternating of wetting and drying periods. Multiple tension fractures with NE strike were formed in the track-bearing bed, which resulted in that tracks seem to occur in several horizons. The significance in natural history of the tracksite can be summarized as follows: 1) the historical implication of the Jeori tracksite as the firstly designated National Monument of dinosaur fossil sites, 2) the high density of the occurrence of diverse footprints (over 300) within small area (about $1,600m^2$), and 3) the significance of the tension fractures associated with the track-bearing bed as geoeducational records for the understanding the development of fault. In order to share the value of the Jeori tracksite in the aspect of natural history with the community and public, the interpretive panel should be modified to include figures explaining paleoenvironment and tension fault development. In addition it is recommended that a brochure be published briefly explaining the tracksite and to educate the residents about the natural and social significance of the tracksite. For the safety of visitors it would be desirable for the road in front of the tracksite to be moved at least 10 m southward, which could mitigate the shaking of the track bed caused by traffic.