• Title/Summary/Keyword: bearing temperature

Search Result 778, Processing Time 0.033 seconds

The Static Characteristics of Hydrostatic Journal Bearings (정압저어널 베어링의 정특성 해석)

  • Park, Cheon-Hong;Kim, Seok-Il;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.21-27
    • /
    • 1988
  • In this study, a series of experiments and analyses are performed to estimate the static characteristics of hydrostatic journal bearing such as load capacity, pressure change in each recess, eccentricity of spindle, etc. The experiments are carried out for a multi-recess type journal bearing with capillary restrictor. The Finite Element Method(FEM) is used for the analyses. The predicted load capacity under the condition of stationary or eccentric ratio of bellow 0.2 of the spindle shows excellent agreement with the measured. But, with an increase of the eccentric ratio when the spindle is rotating, the predicted load capacity is largely estimated than the measured. It seems that the difference is mainly caused among others from the fact that the effect of oil-viscosity variation due to the temperature change in the bearing is not introduced into the analyses. The analysis method proposed to estimate the static characteristics of hydrostatic journal bearing is considered to be very reliable since the predicted results are overall in good agreement with the measured.

  • PDF

Analysis on the Thermal Characteristics of Spindle of a High Precision Lathe (고정밀 선반 주축계의 열특성 해석)

  • 김용길
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.44-51
    • /
    • 1997
  • Unsteady-state temperature distributions and thermal deformations of the spindle of a high precision lathe are studied in this paper. Three dimensional model is built for analysis, and the amount of heat generation of bearing and the thermal characteristic values including heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the thermal boundary values. Numerical results are compared with the measured data. The results show that the thermal deformations and the temperature distributions of the dpindle of a high precision lathe can be reasonably estimated using the three dimensional model and the finite element method.

  • PDF

Influence of the environments on the movement precision of the guide table using externally pressurized porous air bearing (다공질 정압공기 베어링을 이용한 직진 테이블에 있어 주위환경이 움직임 정밀.정확도에 미치는 영향)

  • 한응교;허석환;노병옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.721-729
    • /
    • 1988
  • Recently, the precision required by precision manufacturing and machinery related to electronics is within the domain of submicron that it is difficult to evaluate them by traditional measuring equipments and methods. Accordingly, precision of sub 0.1.mu.m super precise position-decision-apparatus and straight-guide air bearing have been researched and they are almost ready to be used. In utilizing straight-guide-table for super-precision-measurement which used externally pressurized porous air bearing as a way of externally pressurized air bearing, the high-precision-straight movement is the most crucial. In this study, the researcher conducted the experimental study with trial manufacture to see how the surrounding temperature and support condition influenced the selection and allocation of the machine composing element which is important to the high-precision-straight movement. The researcher finding showed that when the property of the rail part and support part of the semi-closed slider form is different, the heat generation of the working motor and surrounding temperature influence the high-precision-straight movement significantly and the researcher showed the influence of the condition of central load and eccentric load to the straight movement precision when the support stand of the straight-table was supported by numerical values.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.

The built-in sensor bearing to measure shaft behavior of compressor for air-conditioning (공조용 압축기 축 거동 측정용 베어링 내장형 센서)

  • 김지운;안형준;김지영;한동철;윤정호;황인수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.230-236
    • /
    • 2001
  • We developed a built-in sensor bearing to measure the rotor motion of a rolling piston type compressor for the air conditioner. Because of needs for the high efficiency and long life span of compressor, and the usage of alternative refrigerants, the operating condition of the compressor becomes more severe. The accurate measurement of the rotor motion of the compressor can contribute greatly to the design and analysis of the hydrodynamic bearing. However, it is difficult to measure accurately the shaft behavior of small compressor because of the small space for the sensor mount, high temperature and pressure of compressor, oil mixed with refrigerant, and electromagnetic noise of the motor. To overcome these difficulties, we develop the cylindrical capacitive sensor that is built in the hydrodynamic bearing and calibrate the built-in sensor bearing indirectly through measuring the oil relative permittivity. We measured the rotor motion as well as suction and discharge pressures in various conditions. The several experimental results show that the developed built-in sensor bearing can measure the rotor motion not only in steady state but also in transient state.

  • PDF

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances (미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구)

  • Hong, Dongpyo;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, a non-destructive evaluation (NDE) mothod is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.

Measurement of Horizontal Coherence Using a Line Array In Shallow Water

  • Park, Joung-Soo;Kim, Seong-Gil;Na, Young-Nam;Kim, Young-Gyu;Oh, Teak-Hwan;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.78-86
    • /
    • 2003
  • We analyzed the measured acoustic field to explore the characteristics of a horizontal coherence in shallow water. Signal spatial coherence data were obtained in the continental shelf off the east coast of Korea using a horizontal line array. The array was deployed on the bottom of 130 m water depth and a sound source was towed at 26 m depth in the source-receiver ranges of 1-13 ㎞. The source transmitted 200 ㎐ pure tone. Topography and temperature profiles along the source track were measured to investigate the relationship between the horizontal coherence and environment variations. The beam bearing disturbance and array signal gain degradation is examined as parameters of horizontal coherence. The results show that the bearing disturbance is about ± 8° and seems to be affected by temporal variations of temperature caused by internal waves. The array signal gains show degradation more than 5㏈ by the temporal and spatial variations of temperature and by the down-sloped topography.

Frictional Characteristics of Silicon Graphite Lubricated with Water at High Pressure and High Temperature (고온 고압에서 물로 윤활되는 실리콘그라파이트 재질의 마찰 특성에 관한 연구)

  • Lee, Jae-Seon;Kim, Eun-Hyun;Park, Jin-Seok;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.151-156
    • /
    • 2001
  • Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss ana wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics.

  • PDF