• 제목/요약/키워드: bearing stress

검색결과 680건 처리시간 0.026초

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Composite action of hollow concrete-filled circular steel tubular stub columns

  • Fu, Qiang;Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.693-703
    • /
    • 2018
  • To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. AfteGr the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.

철근콘크리트 기둥과 철골보의 접합부 개발 및 지압성능에 관한 시험적 연구 (A Study on the Development and Test on Bearing Resistance of R/C Column-Steel Girder Connection)

  • 최광호;이세웅;김재순;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.515-520
    • /
    • 1997
  • This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column with smooth stress transfer. As the first step of the structural performance tests of the system, bearing resistance test has been carried out for actual size specimen. From the test, the connection system has been proved to take good bonding and stress transfer to the surrounding concrete with negligible relative displacements.

  • PDF

열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구 (Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill)

  • 변상민
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.

무도상 철도교 레일 장대화를 위한 궤도-교량 상호작용 해석 및 개량방안 분석 (Analysis of Track-Bridge Interaction and Retrofit Design for Installation of CWR on Non-ballasted Railway Bridge)

  • 윤재찬;이창진;장승엽;최상현;박성현;정혁상
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.383-392
    • /
    • 2018
  • 본 연구에서는 비교적 경간이 긴 트러스교를 포함한 무도상 교량을 대상으로 장대레일을 부설할 때 궤도-교량 상호작용으로 인한 레일 부가 축응력과 교량 지점 반력 등의 변화를 검토하여 레일 장대화를 위한 개량 방안을 분석하였다. 연구결과에 따르면 무도상 교량에서 장대레일을 부설할 경우 레일 부가 축응력과 지점 반력이 큰 폭으로 증가하는 것으로 나타났다. 레일 부가 축응력은 횡저항력을 충분히 확보할 경우 수용 가능하지만, 지점 반력이 증가하게 될 경우 받침이나 교각의 손상이 우려되고 대규모 보수 보강을 필요로 하므로 지점 반력을 완화시킬 수 있는 방안을 강구할 필요가 있다. 교량 가동단의 마찰저항을 고려하는 경우 레일 부가 축응력은 감소하지만 지점 반력에 미치는 영향은 매우 작은 것으로 나타났다. 반면 궤도 종저항력이 작아지면 레일 부가 축응력과 지점 반력이 모두 큰 폭으로 감소하는 것으로 나타났으며, 레일 부가 축응력이 큰 일부 구간에 ZLR 체결장치를 적용하는 경우 레일 부가 축응력 뿐 아니라 교량 지점 반력이 크게 감소하는 것으로 나타났다. 따라서 무도상 교량의 레일 장대화를 위하여 일부 ZLR 체결장치를 적용하고 궤도 종저항력을 줄이는 방안이 매우 효과적이라고 판단된다.

베어링 캡 유한 요소 해석 설계 방법 (Design Methodology of Main Bearing Cap by a Finite Element Analysis)

  • 양철호;한문식
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.

공작기계용 고속 볼베어링의 최적 끼워맞춤에 관한 연구 (A Study on the Optimum Shrink-fit for High Speed Ball Bearing of Machine Tool)

  • 김웅;이춘만;황영국
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.94-102
    • /
    • 2010
  • The spindle is the main component in machine tools. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Bearing is very important part in spindle. The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of shrink fits. The aims of this study are to grasp the shrink fits and behavior of a bearing which is a deeply connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). This paper proposed optimum value of shrink fit considering deformation of spindle and stress of fitting area using design of experiments. Thus, the proposed formula can be used to obtain bearing internal clearance.

교량용 탄성받침의 설계압축응력에 대한 고찰 (The Design Criteria of Elastomeric Bearing for Highway Bridges)

  • 전규식
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.136-143
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. The quality of Elastomeric bearing depends on the vulcanization procedure to manufacture, which produces the elasticity of the rubber from the compound of rubber and sulphur. The durability of Elastomeric bearing is affected by the deterioration due to ozone and ultra-violet attack. but the durability during the design life of bridges can be assured by the sufficient size of the bearing in spite of the deterioration in surface. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has!

  • PDF

X선회절에 의한 SHOT PEENING처리 구름베어링의 구름접촉 피로해석 (Analysis of the Rolling Contact Fatigue of the Shot Peened Ball Bearing by X-ray Diffraction)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.39-45
    • /
    • 1997
  • The shot peening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shot peening treatment for inner race of ball bearing on the rolling contact fatigue. Shot peening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shot peening treatment. This effect was found to be more pronounced to the full hardened bearing. These facts might be due to the generation of compressive residual stress and the strain hardening of surface layer by shot peening treatment. The failure of the shot peened bearing were presumed to initiate at surface.

롤러 프로파일에 따른 항공용 기어박스 원통 롤러 베어링의 응력 및 수명 평가 (Stress & Life Evaluation of Cylindrical Roller Bearing for Aircraft Gearbox according to Roller Profile Shape )

  • 김재현;한현우;임동우;박정호;김수철;박영준
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.35-44
    • /
    • 2022
  • 본 연구의 목적은 항공용 기어박스에 사용되는 원통 롤러 베어링의 응력과 수명을 평가하고, 베어링 롤러와 전동륜 사이에 작용하는 접촉 응력을 최소화하는 롤러 프로파일을 선정하는 것이다. 원통 롤러 베어링이 모든 반경 방향 하중을 지지하도록 4점 접촉 볼 베어링의 설치 간극을 결정하였고, 베어링의 수명을 최대화하는 베어링 설치 위치를 결정하였다. 또한, 항공용 기어박스의 작동 조건을 기반으로 결정된 하중 스펙트럼을 이용하여 베어링의 정적 안전 계수와 동적 수명을 각각 ISO 76과 ISO/TS 16281로 예측하였다. 추가로, 롤러 프로파일 형상에 따른 접촉 응력을 해석하여 최적의 롤러 프로파일을 선정하였고, 롤러의 안정성을 평가하였다. 그 결과, 요구되는 안전 계수와 수명을 모두 만족하였으며, Johns Gohar 롤러 프로파일이 최적의 롤러 프로파일임을 확인하였다.