• Title/Summary/Keyword: bearing resistance

Search Result 599, Processing Time 0.022 seconds

Effects of Melting Condition and Alloying Elements on Localized Corrosion Resistance of High Cr and N Bearing Stainless Steels

  • Yoo, Y.R.;Jang, S.G.;Cho, H.H.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • In this study, the characteristics of the experimentally produced high N-high Cr bearing stainless steels are discussed as a part of applications of materials for FGD (Fuel Gas Desulfurization) system of thermal power plants or for power plants using seawater as coolant. Corrosion resistance of developed alloys is especially investigated in detail. Corrosion characteristics of vacuum melted cast are shown to be superior to that of air melted one. From the viewpoint of CPT, It is estimated that the differences of corrosion resistance are $21.8^{\circ}C{\sim}24.6^{\circ}C$ at PRE 40 and $8^{\circ}C{\sim}12.4^{\circ}C$ at PRE 50, and the gaps becomes bigger as the PRE values are lower. In the evaluation of corrosion resistance in alloy A2501, Z3101, and A3301 according to Cr concentration, alloy A3301 shows a deviation from the general tendency in chloride solutions. It has relatively high PRE value as 48.6, but it has relatively poor pitting resistance. It is, however, difficult to observe a specific phase except ferrite in microstructure analysis and neither detects special phase such as sigma phase.

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Corrosion Resistance of Cr-bearing Rebar in Concrete Subjected to Carbonation and Chloride Attack (중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • Ten types of steel bars having different Cr contents were embedded in concretes with chloride ion contents of 0.3, 0.6, 1.2, and $2.4kg/m^3$ to fabricate specimens assuming such deteriorative environments. After being carbonated to the reinforcement level, these concretes were subjected to corrosion-accelerating cycles of heating/cooling and drying/wetting. The time-related changes in the corrosion area and corrosion loss of the Cr-bearing rebars were then measured to investigate their corrosion resistance. The results revealed that in a deteriorative environment prone to both carbonation and chloride attack, corrosion resistance was evident with a Cr content of 7% or more and 9% or more in concretes with chloride ion contents of 1.2 and $2.4kg/m^3$, respectively.

The Evaluation of Fire-Resistant Performance of the Non-bearing Steel Wall Using Fire Resistant Glass (내화유리를 적용한 강재 유리벽의 내화성능 평가)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Yang, Seung-Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.72-81
    • /
    • 2018
  • Fireproof structures using concrete, built-up panels and dry walls are usually used in walls inside fire compartments. However, demand for glass walls is emerging due to increase in interest in visibility and external appearance. In this study on steel fire resistance walls using insulation glass, fire resistance tests and performance evaluations were conducted on 60 minute fire resistance walls and exterior walls which could be applied to interior fire compartments and 90 minute fire resistance walls which could be applied to curtain walls. According to the tests, the specimens satisfied the required fire resistance performance. The finite element analysis was conducted after the tests to evaluate the fire resistance performance of the glass walls. The analysis results showed that the preliminary evaluation of fire resistance performance would be feasible.

A simple approach for quality evaluation of non-slender, cast-in-place piles

  • Zhang, Ray Ruichong
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • This study proposes a conceptual framework of in-situ vibration tests and analyses for quality appraisal of non-slender, cast-in-place piles with irregular cross-section configuration. It evaluates a frequency index from vibration recordings to a series of impulse loadings that is related to total soil-resistance forces around a pile, so as to assess if the pile achieves the design requirement in terms of bearing capacity. In particular, in-situ pile-vibration tests in sequential are carried out, in which dropping a weight from different heights generates series impulse loadings with low-to-high amplitudes. The high-amplitude impulse is designed in way that the load will generate equivalent static load that is equal to or larger than the designed bearing capacity of the pile. This study then uses empirical mode decomposition and Hilbert spectral analysis for processing the nonstationary, short-period recordings, so as to single out with accuracy the frequency index. Comparison of the frequency indices identified from the recordings to the series loadings with the design-based one would tell if the total soil resistance force remains linear or nonlinear and subsequently for the quality appraisal of the pile. As an example, this study investigates six data sets collected from the in-situ tests of two piles in Taipu water pump project, Jiangshu Province of China. It concludes that the two piles have the actual axial load capacity higher than the designed bearing capacity. The true bearing capacity of the piles under investigation can be estimated with accuracy if the amplitude of impact loadings is further increased and the analyses are calibrated with the static testing results.

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.

Study of Fire Resistance for Long Span Beams Made of Submarine Structural Steels (용접구조용 강재 적용 대형 보부재의 내화성능 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.149-150
    • /
    • 2015
  • Structural beam plays a key role to carry the applied load on the floors. And then the beam have to sustain the applied load and its load-bearing capacity in fire situation. In this study to know the fire resistance performance of long span beam made of a submarine structural steels, an engineering method is used using mechanical and thermal properties of structural steel at high temperature.

  • PDF

Effect of Si Addition on the Corrosion Resistance of CrN Coatings in a Deaerated $3.5wt.\%$ NaCl Solution (탈기된 $3.5wt.\%$ NaCl 용액 환경에서의 스테인리스 강에 증착된 CrN 박막의 Si 첨가에 따른 영향 평가)

  • Kim Woo-Jung;Choi Yoon-Seok;Kim Jung-Gu;Lee Ho-Young;Han Jeon-Gun
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.137-143
    • /
    • 2005
  • CrSiN coatings of stepwise changing Si concentration were deposited on stainless steel by closed field unbalanced magnetron sputtering (CFUBM) system. Microstructure of the films due to the Si concentration is measured by XRD. The corrosion behavior of CrSiN coatings in deaerated $3.5\%$ NaCl solution was investigated by potentiodynamic test, electrochemical impedance spectroscopy (EIS) and surface analyses. The microstructure of CrSiN film depends on the Si concentration. When Si/(Cr+si) was under $11.7\%$, preferred orientation is defined at CrN(220), CrN(311) and $Cr_2N(111).$ The results of potentiodynamic polarization tests showed that the corrosion current density and porosity decreased with increasing Si/(Cr+si) ratio. EIS measurements showed that the corrosion resistance of Si-bearing CrN was improved by phase transformation of the film, which leads to increase of pore resistance and charge transfer resistance. At the Si(Cr+si) ratio of 20, the Si-bearing CrN possesses the best corrosion resistance due to the highest pore resistance and charge transfer resistance.

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF