• Title/Summary/Keyword: bearing geometry

Search Result 139, Processing Time 0.024 seconds

An Analysis and Test for Leakage Flow of Sealless Cylinder (고성능 씰리스 실린더의 해석 및 누설유량 시험)

  • Kim, Sung-Jong;Kim, Dong-Soo;Lee, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.961-966
    • /
    • 2004
  • The cylinder without seal has a piston with air bearing which is partly cylindrical and conical shape. The description of system geometry is deviation by the flow rate equation. Then pressure distribution and bearing force equations are derived. Several non-dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively. As a result of leakage flow test, it is evaluation to air bearing in sealless cylinder.

  • PDF

Characteristics Analysis of Sealless Cylinders (씰리스 실린더 특성 해석에 관한 연구)

  • 서현석;김동수;유찬수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.824-827
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of seatless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

Modelling and Simulation of Sealless Cylinders (씰리스 실린더 모델링 및 시뮬레이션)

  • Kim, D.S.;Seo, H.S.;Choi, B.O.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1911-1915
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

An Experimental Analysis on the Maximum Allowable PV Value of Oilless Composite Bearing Materials (오일레스 복합계 베어링재의 최대허용 PV값 측정에 관한 실험적 고찰)

  • 공호성;윤의성;전기수;송광호
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.27-36
    • /
    • 1995
  • Maximum allowable PV values of oilless composite bearing materials (70% epoxy-resin/30% Graphite) were measured and compared at various types of test rigs that have different contact geometry and the operating conditions. Test results showed that material failure was mainly characterized by the sharp increase in both coefficient of friction and surface temperature, and different PV values were measured under different Contact geometry. The discrepancy in measurement of PV values was analyzed in the light of theoretical frictional heating analysis. Results show that surface temperature rise depends on its contact geometry, and PV values could be overestimated in the testing conditions of high sliding velocity. Test data of different contact geometry were normalized by using a normalized contact pressure and sliding velocity; it showed a good correlation. This work suggests that normalized PV values could be more effective in evaluating bearing materials than conventional PV values for a design parameter of journal bearings.

Selection of Internal Clearance for Automotive Wheel Bearings Considering an Assembling Procedure (조립과정을 고려한 차륜용 베어링의 내부틈새 선정)

  • 현준수;안태길;김성근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2000
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance lift of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, geometry, internal clearance and so on. Under the same geometry and loading conditions, the internal clearance is the most effective parameters on the endurance lift of a bearing. Generally, bearings have the longest lift with a little negative internal clearance. But it is very difficult to measure and modify the internal clearance after a wheel bearing is assembled. In this paper, we analyze the effect of an assembling procedure on the clearance of wheel bearings and suggest a method to determine optimal clearance for automotive wheel bearings by selecting initial bearing clearance.

  • PDF

Strength and Failure Mode Prediction of Mechanically Fastened Carbon/Epoxy Joints (탄소/에폭시 복합재료 구조물의 기계적 결합에 대한 강도 및 파손모드 예측)

  • 김기범;이미나;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.111-121
    • /
    • 1997
  • An investigation was performed to study the predicting the joint strength of mechanical fasteners. Bearing failure is most important failure mode for designing joint. So in this study, the prediction method in consideration with bearing failure was chosen. In the proposed method, the characteristic length is combined with the Yamada-Sun failure criterion, Tsai-Hill failure criterion and characteristic length for Tension and Compression is determined from investigation. Especially the length of compression is determined from the "bearing failure test" that newly conceived to take bearing failure into consideration. The proposed prediction method was applied to quasi-isotropic carbon/epoxy joint showing net-tension and bearing failure experimentally. Good agreement was found between the predicted and experimental result for each joint geometry. geometry.

  • PDF

Experimental and finite element analyses of footings of varying shapes on sand

  • Anil, Ozgur;Akbas, S. Oguzhan;Babagiray, Salih;Gel, A. Cem;Durucan, Cengizhan
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.223-238
    • /
    • 2017
  • In this study, bearing capacities and settlement profiles of six irregularly shaped footings located on sand have been experimentally and analytically investigated under the effect of axial loading. The main variable considered in the study was the geometry of the footings. The axial loads were applied from the center of gravities of the test specimens. Consequently, the effect of footing shape on the variation of the bearing capacities and settlement profiles have been investigated in this paper. The three dimensional finite element analyses of the test specimens were conducted using the PLAXIS 3D software. The finite element model results are in acceptable agreement with the results obtained using experimental investigation. In addition, the usability of the finite element technique by design engineers to determine the bearing capacities and settlement profiles of irregularly shaped footings was investigated. From the results of the study, it was observed that the geometric properties of the footings significantly influenced the variation of the bearing capacities and settlement profiles.

Endurance Life Estimation of Taper Bearing Units (테이퍼 베어링 유닛의 내구수명 예측)

  • Ahn, Tae-Kil;Lee, Sang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.160-164
    • /
    • 2007
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. Generally, a tapered roller bearing gives longer endurance life than that of an equivalent size ball bearing. Consequently, the application of taper bearing units will be increased for more compact design and extended warranty. In this paper, we derive the relation between loads and deformations of a taper bearing unit. On the basis of that, we calculate the endurance life of the taper bearing unit considering initial axial clearance.

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;김영진;유송민
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.432-439
    • /
    • 2000
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinate system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The caharacteristics of finite herringbone groove journal bearing are well calculated using this method.

Design of a Wheel Bearing Unit Using Taguchi Method (다구찌 방법을 이용한 휠 베어링 유니트의 형상설계)

  • 안태길;이상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.164-168
    • /
    • 2003
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, operating temperature, loading conditions, bearing geometry, the internal clearance of bearing and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units for optimal bearing unit design. On the basis of it, we calculate the endurance life of w heel bearing units and analyze the contribution of bearing geometric parameters on the endurance life by using Taguchi method.