• Title/Summary/Keyword: bearing fault

Search Result 216, Processing Time 0.028 seconds

Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea (삼광 금-은광상의 산출광물, 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;최선규
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.299-316
    • /
    • 2002
  • The Samkwang gold-silver deposits consist of gold-silver-bearing hydrothermal massive quartz veins which filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits occurred within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Based on vein mineralogy and paragenesis, massive quartz veins are divided into two main paragenetic stages which are separated by a major faulting event. Main ore mineralization occurred at stage I. Wall-rock alteration from this deposits occur as mainly sericitization, chloritization, silicification and minor amounts of pyritization, carbonitization, propylitization and argillitization. Ore minerals are composed mainly of arsenopyrite (29.21-32.24 As atomic %), pyrite, sphalerite (6.45-13.82 FeS mole %), chalcopyrite, galena with minor amounts of pyrrhotite, marcasite, electmm (39.98-66.82 Au atomic %) and argentite. Systematic studies of fluid inclusions in early quartz veins and microcracks indicate two contrasting physical-chemical conditions: 1). temperature (215-345$^{\circ}$C) and pressure (1296-2022 bar) event with $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids (0.8-6.3 wt. %) related to the early sulfide deposition, 2). temperature (203-441$^{\circ}$C) and pressure (320 bar) event with $H2_{O}$-NaCI $\pm$ $CO_{2}$ fluids (5.7-8.8 wt. %) related to the late sulfide and electrum assemblage. The H20-NaCI $\pm$ $CO_{2}$ fluids represent fluids evolved through fluid unmixing of an $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids due to decreases in fluid pressure and influenced of deepcirculated meteoric waters possibly related to uplift and unloading of the mineralizing suites. Calculated sulfur isotope compositions (${\delta}^{34}S_{fluid}$) of hydrothermal fluids (1.8-4.9$\textperthousand$) indicate that ore sulfur was derived from an igneous source. Measured and calculated oxygen and hydrogen isotope compositions (${\delta}^{18}O_{I120}$, ${\delta}D$) of ore fluids (-5.9~10.9$\textperthousand$, -102~-87$\textperthousand$) indicate that mesothermal auriferous fluids at Samkwang gold-silver deposits were likely mixtures of $H_{2}O$-rich, isotopically less evolved meteoric water and magmatic fluids.

A Preliminary Study on the Igneous Layering and Concentration of Fe-Ti Oxide Minerals within Amphibolite in Soyeonpyeong Island (소연평도 각섬암 내 화성기원 층상구조와 Fe-Ti 산화광물의 농집에 관한 예비연구)

  • Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.375-387
    • /
    • 2017
  • Amphibolite-hosted Fe-Ti mineralization at the Soyeonpyeong Island, located in central western part of the Korean Peninsula is a typical orthomagmatic Fe-Ti oxide deposit in South Korea. The amphibolite intruded into NW-SE trending Precambrian metasedimentary rocks. Lower amphibolite is characterized by igneous layering, consisting of feldspar-dominant and amphibole-Fe-Ti oxide-dominant layers. The igneous layering shows complicated and/or sharp contact. In contrast, upper amphibolite has a more complicated lithofacies (garnet-bearing, coarser, and schistose), and massive Fe-Ti oxide ore alternates with schistose amphibolite. NS- and EW-trending fault systems lead to redistribute upper amphibolite-hosted Fe-Ti orebody and igneous layering of lower amphibolite, respectively. The whole-rock compositions of amphibolite and Fe-Ti oxide ore reflect their constituent minerals. Amphibolite shows significantly positive Eu anomalies whereas Fe-Ti oxide ore has weak negative Eu anomalies. Plagioclase (Andesine to oligoclase) and Fe-Ti oxide minerals have constant composition regardless of their distribution. Amphibole has a compositionally variable but it doesn't reflect the chemical evolution. Mineral compositions within individual layers and successive layers are relatively constant not showing any stratigraphic evolution. This suggests that there are no successive injections of Fe-rich magma or assimilation with Fe-rich country rocks. Contrasting Eu anomalies between amphibolite and Fe-Ti oxide ore also suggest that extensive plagioclase fractionation during early crystallization stage cause increase in $Fe_2O_3/FeO$ ratio and overall Fe contents in the residual magma. Thus, Fe-rich residual liquids may migrate at the upper amphibolite by filter pressing mechanism and then produce sheeted massive Fe-Ti mineralization during late fractional crystallization.

A Critical Approach on Environmental Education Biased to Environmental Possibilism - From Clearing up the Cause to Problem-Solving Mechanism - (환경관리주의 환경교육에 대한 비판적 고찰 - 원인규명에서 해결기제로의 전환을 위하여 -)

  • Kim, Tae-Kyung
    • Hwankyungkyoyuk
    • /
    • v.18 no.3 s.28
    • /
    • pp.59-74
    • /
    • 2005
  • We can't deny Korean EE has basically developed on the basis of Environmental Possibilism (Environmental management or Reformism) in lots of aspects. I would show three representative proofs here, the first, the philosophy of Korean EE has been mainly focused on dichotomy of human-techno centrism and eco-centrism with no considering other alternative environmentalism since 4th Formal Curriculum, 1981. The second, simultaneously, the concept of EE has not distinguished from it of Science education. (Furthermore, unfortunately some says EE has been a part of Science education, although there should be many differences on its contextual aspect.) And the third one is that the limit of possibilism which market economists have worried, has scarcely mentioned in various kinds of EE-related teaching materials. Possibilism is basically likely to be accompanied by science and economics-oriented approach, and in this aspect this dichotomy, human-techno centrism and eco-centrism, has come from perspectives of Economical development process and over-addicted belief to Science. So it is enough to say that Korean EE has basically developed with biased to Environmental possibilism, in other words, biased to preference to it. And I'll critically focus on these two axes of possibilism, Science and Economics and its dichotomy. Of course, we should accept there are so many same parts in its contents between EE and Science, but we should know its contextual differences for triangular position of environmentalism suitable to EE and also overcome science-dependant approach to EE. Although science-dependant approach to EE and dichotomy could provide some tools for clearing up the causes of environmental problem, especially always it has insisted fundamental causes of environmental problem originated in human faults and over-use of eco-source or over-economic development, but now it is old-fashioned discourse, furthermore it come to have unavoidable limits in the debates of problem-solving mechanism to environmental problems. The paramount important thing is to supply the ways or thoughtful mechanism for solving or coordinating the Environmental problems, not just searching for cause of it. But scientific approach and its dichotomy based on possibilism have continuously born cause & effect in EE-related discourse. So there are so much needs to transfer from continuous bearing of cause & effect to constructive alternatives at least in environmentalism of EE. Traditionally, dichotomical division in EE Environmentalism, human-techno centrism and eco-centrism, couldn't have Provided any answers to our real society, it just gives us only cause & effects of Environmental problems. And also we can't find the description on the limits of capitalism market approach to Environmental problems especially in Korean EE text books, other teaching materials and its teaching-learning process, although market approach economist has been proved its fault beyond its functional merits as Environmental management tools. So we should introduce other alternative Environmental philosophy instead of Possibilism such as eco-socialism insisted by Schmacher M. and Boochin etc, or marxist-environmentalism for relative and comparative views to market-thought such as commodification. In this aspect we need to accept Oriental philosophy based on moderation(中庸) as new another alternatives with the reflection that we have recognized monism as representative Oriental philosophical environmentalism. Fundamentally monism has done its role with providing relative concepts to Dichotomy Enlightenment, but we can't say it has been core concept for understanding of oriental environmentalism, and we can't distinguish monism from oriental philosophy itself, just because oriental thought itself was basically monism. So conceptual difference should be recognized between EE and Science education in teaching-learning process on the basis of life-philosophy(Philosophie des Lebens) from epistemology. For this transformation, we should introduce existentialism in Science education, in other words, only existential Science education based on phenomenology or interpretivism can be EE. And simultaneously we need some ways for overcoming of scientific foundationalism which has been tradition making science not stand on existentialism, formulating and featuring of almost all of natural things and its phenomenon from after enlightenment in western world, but it has malfunctioned in fixing conception of science just into essentialism itself. And we also introduce integrated approach to science and society for EE like STS. Those are ways for overcoming of Environmental possibilism in EE.

  • PDF

Mesothermal Gold Vein Mineralization of the Seolhwa Mine: Fluid Inclusion and Sulfur Isotope Studies (설화 광산의 중열수 금광화작용: 유체포유물 및 황동위원소 연구)

  • Yun, Seong-Taek;So, Chil-Sup;Choi, Seon-Gyu;Choi, Sang-Hoon;Heo, Chul-Heo
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.278-291
    • /
    • 2001
  • Mesothermal gold vein minerals of the Seolhwa mine were deposited in a single stage of massive quartz veins which filled the mainly NE-trending fault shear zones exclusively in the granitoid of the Gyeonggi Massif. The Seolhwa mesothermal gold mineralization is spatially associated with the Jurassic granitoid of 161 Ma. The vein quartz contains three main types of fluid inclusions at 25$^{\circ}$C: 1) low-salinity (< 5 wt.% NaCl), liquid CO$_{2}$-bearing, type IV inclusion; 2) gas-rich (> 70 vol.%), aqueous type II inclusions; 3) aqueous type I inclusions (0${\sim}$15 wt.% NaCl) containing small amounts of CO$_{2}$. The H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl inclusions represent immiscible fluids trapped earlier along the solvurs curve at temperatures from 430$^{\circ}$ to 250$^{\circ}$C and pressures of 1 kbars. Detailed fluid inclusion chronologies may suggest a progressive decrease in pressure during the auriferous mineralization. The aqueous inclusion fluids represent either later fluids evelved through extensive fluid unmixing (CO$_{2}-CH$_{4}$ effervescence) from a homogeneous H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters possibly related to uplift and unloading of the mineralizing suites. The initial fluids were homogeneous containing H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl components and the following properties: the initital temperature of >250$^{\circ}$ to 430$^{\circ}$C, X$_{CO}\;_{2}$ of 0.16 to 0.62, 5 to 14 mole% CH$_{4}$, 0.06 to 0.3 mole% N$_{2}$ and salinities of 0.4 to 4.9 wt.% NaCl. The T-X data for the Seolhwa gold mine may suggest that the Seolhwa auriferous hydrothermal system has been probably originated from adjacent granitic melt which facilitated the CH$_{4}$ formation and resulted in a reduced fluid state evidenced by the predominance of pyrrhotite. The dominance of negative ${\delta}\;^{34}$S values of sulfides (-0.6 to 1.4$%_o$o) are consistent with their deep igneous source.

  • PDF

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상의 모암변질과 원소분산 특성 연구)

  • Yoo, Bong-Chul;Chi, Se-Jung;Lee, Gil-Jae;Lee, Jong-Kil;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.713-726
    • /
    • 2007
  • The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.