• Title/Summary/Keyword: bearing failure mode

Search Result 175, Processing Time 0.02 seconds

A Study on the Life Characteristic of an Automotive Water-pump Bearing Using the Accelerated Test Method (가속시험법을 활용한 자동차용 워터펌프 베어링의 수명특성에 관한 연구)

  • Yang, Hui Sun;Shin, Jung Hun;Park, Jong Won;Sung, Baek Ju
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.35-41
    • /
    • 2015
  • A water-pump located in the cooling area of a car circulates cooling water. A particular bearing element, known as a water-pump bearing, installed in the rotating part carries the entire load. The failure of this water-pump bearing has a direct impact on the failure of the automobile engine, and so securing its reliability is crucial. Several researchers have examined the design principles of the water-pump bearing, but there are no reports on the life characteristic of the bearing yet. Herein, we report the construction of test equipment to reproduce the spalling of the roller contact, which is the main failure mode of the chosen water-pump bearing. We chose the radial load as an accelerated stress factor and validated the failure mode by monitoring the surface defects. We conducted the accelerated life test after determining the accelerated stress level through a combination of finite element analysis and a preliminary test. In the life tests, we used an accelerometer to perform failure diagnosis. In the last stage of this study, we present a statistical reliability analysis. Thus, we fully estimated the shape parameter of the water-pump bearing, accelerating level on the load , and the lifetime (MTTF and B10 life) under real use conditions, and finally proposed an interval estimation value considering the uncertainty of the estimated value.

A Study on the Rolling Bearing Failure Mode of Automotive Transmission(I) (자동차 변속기용 구름베어링의 파손현상 고찰(I))

  • 현준수;문호근;박태조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.406-411
    • /
    • 2001
  • This paper shows the failure(wear) phenomena of automotive transmission bearings and investigate their characteristics. It was found that the wear mechanism was mainly abrasive wear by the presence of particles in the gear box and the balls was weared more severely than the other tribological contacting parts. The wear of balls alter the bearing contact angle and load ratings, and finally it cause the bearing failure. With close examination of the failed bearing, various countermeasures could be suggested.

  • PDF

End Bearing Capacity of a Pile in Cohesionless Soils (사질토에 있어서 말뚝의 선단부 지지력)

  • 이명환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.71-123
    • /
    • 1988
  • The aim of this paper is to examine the end bearing capacity of a pile in cohesionless soils. The ode of failure of soil due to pile installation is assumed from experimental observation of actual soil deformation. A new solution is proposed complying with the assumed mode of failure by employing the theory of cavity expansion. The effect of curvature of failure envelope is studied in relation to tile proposed solution. The influence of a curved failure envelope becomes larger with increasing degree of curvature and the level of confining stress. This effect in some cases or reduce the end bearing capacity by tore the 80 percent compared with that given by a straight failure envelope. For practical application of tile proposed solution, the method of determining the average volume change in the plastic zone is re-evaluated. The proposed solution is confirmed by comparing the theoretical values with experimental results obtained from model pile tests in a calibration chamber. The comparison shows that the proposed solution provides a reasonable prediction of end bearing capacity for both weak and strong grained soils.

  • PDF

Numerical parametric analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips

  • Zhang, Yingying;Song, Xiaoguang;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • This paper presents the parametric numerical analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips. The effects of several factors on failure modes and ultimate bearing capacity of the purlins are studied, including setup of anti-sag bar, purlin type, sheet thickness and connection type et al. A simplified design formula is proposed for predicting the ultimate bearing capacity of purlins. Results show that setting the anti-sag bars can improve the ultimate bearing capacity and change the failure modes of C purlins significantly. The failure modes and ultimate bearing capacity of C purlins are significantly different from those of Z purlins, in the purlin-sheet roof connected by standing seam clips. Setting the anti-sag bars near the lower flange is more favorable for increasing the ultimate bearing capacity of purlins. The ultimate bearing capacity of C purlins increases slightly with sheet thickness increasing from 0.6 mm to 0.8 mm. The ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips is always higher than those by self-drilling screws. The predictions of the proposed design formulas are relatively in good agreement with those of EN 1993-1-3: 2006, compared with GB 50018-2002.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

A Study on the Rolling Bearing Failure Mode of Automotive Transaxle(II) -Tapered Roller Bearing for Differential Unit (자동차 변속기용 구름베어링의 파손현상 고찰(II) - 차동장치용 테이퍼 로울러 베어링)

  • Hyeon, Jun-Su;Park, Tae-Jo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.162-168
    • /
    • 2002
  • This paper shows the failure(wear) phenomena of differential bearings in the transaxle of passenger cars and investigate their characteristics. It was found that the wear mechanism was mild abrasive wear caused by the presence of particles in the gear box. The sides of the outer raceway was more neared than center of it, so it is showed as if the crowning of outer raceway are increased. With close examination of the failed bearing, various countermeasures could be suggested.

  • PDF

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

Strength Prediction of Mechanically Fastened Carbon/Epoxy Joints (탄소/에폭시 복합재료 구조물의 기계적 결합에 대한 강도 예측)

  • 김기범;이미나;공창덕
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.269-279
    • /
    • 1997
  • An investigation was peformed to study the predicting the joint strength of mechanical fasteners. Bearing failure is most important failure mode for designing joint. So in this study, the prediction method in consideration with bearing failure was chosen. In the proposed method, the characteristic length is combined with the Yamada-Sun failure criterion, Tsai-Hill failure criterion and characteristic length for Tension and Compression is determined from investigation. Especially the length of compression is determined from the "bearing failure test" that newly conceived to take bearing failure into consideration. The proposed prediction method was applied to quasi-isotropic carbon/epoxy joint showing net-tension and bearing failure experimentally. Good agreement was found between the predicted and experimental result for each joint geometry.

  • PDF

An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition (고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.30-36
    • /
    • 2009
  • The failure strengths and modes in carbon fiber reinforced polymeric composites, with two serial bolt-fastened composite joints, were investigated to evaluate the typical joint configurations of composite components. The parametric studies were performed experimentally at room temperature dry and elevated temperature wet, $82.2^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, two basic load-displacements curves are observed. Each failure mode has the characteristic curve. It is showed that the bearing failure mode occurs in elevated temperature wet condition. It is analysed that the strength of bearing failure mode is not highly depending on the effective modulus of specimen. The failure strength at elevated temperature wet is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.