• Title/Summary/Keyword: bearing failure

Search Result 795, Processing Time 0.026 seconds

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

Study on Detection Technique for Outer-race Fault of the Ball Bearing in Rotary Machinery (회전기기 볼베어링의 외륜 결함 검출 기법 연구)

  • Jeoung, Rae-Hyuck;Lee, Byung-Gon;Lee, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Ball bearings are one of main components that support the rotational shaft in high speed rotary machinery. So, it is very important to detect the incipient faults and fault growth of bearing since the damage and failure of bearing can cause a critical failures or accidents of machinery system. In the past, many researchers mainly performed to detect the bearing fault using traditional method such as wavelet, statistics, envelope etc in vibration signals. But study on the detection technique for bearing fault growth has a little been performed. In this paper, we verified the possibility for monitoring of fault growth and detection of fault size in bearing outer-race by using the envelope powerspectrum and probabilistic density function from measured vibration signals.

A Study on Estimation of Bearing Capacity of Sand Compaction Pile by Centrifuge Model Tests (원심모형실험에 의한 모래다짐말뚝의 지지력 산정식 연구)

  • Yoo, Nam-Jae;Hong, Young-KiI;Jun, Sang-Hyun;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.121-130
    • /
    • 2007
  • Centrifuge model tests were performed to find appropriate equations proposed previously of estimating the bearing capacity of the composite clayey soil reinforced with sand compaction pile. Model tests were carried out with changing the replacement ratio of SCP (20%, 40%, 70%), contents of fine materials (5%, 10%, 15%) and ratio of treated width to loading width (1B, 2B, 3B). Test results about bearing capacity of the composite ground were obtained by performing the surcharge load tests with measurements of applied loads and vertical displacement. Bearing capacities against bulging and shear failures were estimated by the existing equations. As results of comparing the estimated bearing capacity with experimental values the bearing capacities estimated by Greenwood's equation (1970) for bulging failure mode were similar to the test results.

  • PDF

Analysis of the Rolling Contact Fatigue of the Shot Peened Ball Bearing by X-ray Diffraction (X선회절에 의한 SHOT PEENING처리 구름베어링의 구름접촉 피로해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 1997
  • The shot peening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shot peening treatment for inner race of ball bearing on the rolling contact fatigue. Shot peening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shot peening treatment. This effect was found to be more pronounced to the full hardened bearing. These facts might be due to the generation of compressive residual stress and the strain hardening of surface layer by shot peening treatment. The failure of the shot peened bearing were presumed to initiate at surface.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

A Study of Bearing Strength on Composite Pinned-Joint at Low Temperature (저온환경에서 복합재료 핀 연결부의 Bearing 강도에 관한 연구)

  • Her, N.I.;Lee, S.Y.;Kim, J.H.;Lee, Y.S.;Sa, J.W.;Cho, S.;Im, K.H.;Oh, Y.K.;Choi, C.H.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.413-418
    • /
    • 2001
  • Fundamental failure mode in a laminated composite pinned-joint is proposed to assess damage resulting from stress concentration in the plate. The joint area is a region with stress concentrations thus a complicated stress state exists. The modeling of damage in a laminated composite pinned-joint presents many difficulties because of the complexity of the failure process. In order to model progressive from initial to final, finite element methods are used rather than closed form stress analyses. Failure analysis must be a logical combination of suitable failure criteria and appropriate material properties degradation rules. In this study, the material properties which were obtained in previous study, the preparing process of the bearing strength test for a pinned joint CFRP composite plate subjected to in-plane loading at low temperature, and the FEM result of progressive damage model using ANSYS program are summarized to assess the structural safety of CFRP plate used in the magnetic supporting post of KSTAR(Korea Superconducting Tokamak Advanced Research).

  • PDF

Failure Study for Tribological Characteristic Analysis of a Clutch System in Passenger Cars (승용차 클러치 시스템의 트라이볼로지 특성에 관련한 고장사례 연구)

  • Kim Chung-Kyun;Lee Il-Kwon
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a case study on the tribological failure analysis of a clutch system for a manual transmission car. The clutch systems are composed of clutch disk, clutch pressure plate, flywheel rubbing surface, coil and diaphragm springs, release bearing and lever, clutch spline and shaft. The purpose of a clutch system is to transmit and disconnect the driving power of engines by frictional farce from a rubbing surface of a flywheel to a clutch disk and clutch pressure plate with a minimum power loss. In this study, many tribological failure cases based on the wear phenomena and thermal distortions have been presented, which are collected from the car repair shop and maintenance center. The triboiogicai failures are mostly come from the driving conditions, overloading of a car, and especially driving style and personal habit of a car driver.

The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model

  • Chu, Xihua;Yu, Cun;Xu, Yuanjie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2012
  • The dilatancy of granular materials has significant influence on its mechanical behaviors. The dilation angle is taken as a constant in conventional associated or non-associated flow rules based on Drucker-Prager yields theory. However, various experimental results show the dilatancy changes during progressive failure of granular materials. A non-associated flow rule with evolution of dilation angle is adopted in this study, and Cosserat continuum theory is used to describe the behaviors of granular materials for considering to some extent the its internal structure. Numerical examples focus on the bearing capacity and localization of granular materials, and results illustrate the capability and performance of the presented model in modeling the effect on failure behavior of granular materials.

Experimentally evaluating the seismic retrofitting of square engineered cementitious composite columns using CFRP

  • Akhtari, Alireza;Mortezaei, Alireza;Hemmati, Ali
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.545-556
    • /
    • 2021
  • The present experimental study evaluated the seismic performance of six engineered cementitious composite (ECC) columns strengthened with carbon fiber reinforced polymer (CFRP) laminates under cyclic lateral loading. The ECC columns damaged and crushed in the first stage of cyclic tests were repaired using the ECC with a certain polyvinyl alcohol (PVA) fiber and strengthened with flexural and sheer CFRP laminates and then re-assessed under the cyclic loading. The effects of some variables were examined on lateral displacement, energy absorption and dissipation, failure modes, crack patterns, load bearing capacity and plasticity, and the obtained results were compared with those of the first stage of cyclic tests. The results showed that retrofitting the ECC columns can improve their performance, plasticity and load-bearing threshold, delayed the concrete failure, changed the failure modes and increased the energy absorbed by the strengthened columns element by over 50%.

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.