• Title/Summary/Keyword: beam-spring model

Search Result 209, Processing Time 0.023 seconds

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.

Modeling and Verification of Multibody Dynamics Model of Military Vehicle Using Measured Data (실차 측정 정보를 이용한 군용 차량의 다물체 동역학 모델링 및 검증)

  • Ryu, Chi Young;Jang, Jin Seok;Yoo, Wan Suk;Cho, Jin Woo;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1231-1237
    • /
    • 2014
  • It is essential to perform driving performance tests of military vehicles on rough terrain. A full car test is limited by cost and time constraints, because of which a dynamic analysis via computer simulation is preferred. In this study, a vehicle model is developed using MSC.ADAMS, a commercial multibody analysis program, and compared via experiments. FTire is modeled using the results of a tire performance test to obtain the vertical stiffness. A nonlinear damper is modeled by a characteristic experiment. Leaf springs are modeled with beam force elements and consisted to a vehicle model. The vertical force and acceleration response of the wheel are identified when vehicle is passing over a simple bump as well as a sinusoidal road. The developed vehicle model is verified with the results of a full car test.

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF

Review of Transverse Steel Design in Continuously Reinforced Concrete Pavement through Finite Element Analysis (유한요소해석을 이용한 연속철근콘크리트 포장의 횡방향 철근 설계 검토)

  • Choi, Pangil;Ha, Soojun;Chon, Beom Jun;Kil, Yong Su;Won, Moon-Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • PURPOSES : This paper numerically evaluates the contribution of transverse steel to the structural behavior of continuously reinforced concrete pavements to understand the role of transverse steel. METHODS : Two-lane continuously reinforced concrete pavements with and without transverse steel were analyzed through finite element analysis with the aid of commercial finite element analysis program DIANA; the difference in their structural behavior such as deflection, joint opening, and stress distribution was then evaluated. Twenty-node brick elements and three-node beam elements were used to model concrete and steel, respectively. Sub-layers were modeled with horizontal and vertical tensionless spring elements. The interactions between steel and surrounding concrete were considered by connecting their nodes with three orthogonal spring elements. Both wheel loading and environmental loading in addition to self-weight were considered. RESULTS : The use of transverse steel in continuously reinforced concrete pavements does not have significant effects on the structural behavior. The surface deflections change very little with the use of transverse steel. The joint opening decreases when transverse steel is used but the reduction is quite small. The transverse concrete stress, rather, increases when transverse steel is used due to the restraint exerted by the steel but the increase is quite small as well. CONCLUSIONS : The main role of transverse steel in continuously reinforced concrete pavements is supporting longitudinal steel and/or controlling unexpected longitudinal cracks rather than enhancing the structural capacity.

A Study on the Brazier Effect of Laminated Plate Structures Having Different Material Constants for Each Element (재료상수가 상이한 요소로 이루어진 적층평판형구조물의 Brazier효과에 관한 연구)

  • 김재열;한상을;권택진
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.199-207
    • /
    • 1996
  • When an initially straight thin cylinder is bent, there is a tendency for the cross section to flatten. This phenomenon was investigated by L.G. Brazier in 1927 and is called "Brazier Effect" or "Brazier Theory". The main characteristic is the reduction of carrying capacity due to the decrease of bending stiffness by shortening of thickness with the increase of external load. And the relationship of curvature-bending moment becomes a soft spring type as shown in Fig.2. In this paper, the Brazier theory on plate type structures is investigated from the following view points : (1) What is the Brazier effect? (2) the reason of the occurrence of the Brazier effect in plate type structures by using beam model and (3) factors which cause the brazier effect.

  • PDF

On the dynamic behavior of functionally graded cracked beams resting on winkler foundation under moving load

  • Alaa A. Abdelrahman;Mohamed Ashry;Amal E. Alshorbagy;Mohamed A. Eltaher;Waleed S. Abdalla
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.169-194
    • /
    • 2024
  • Although the excellent characteristics of functionally graded materials (FGMs) cracks could be found due to manufacturing defects or extreme working conditions. The existence of these cracks may threaten the material or structural strength, reliability, and lifetime. Due to high cost and restrictions offered by practical operational features these cracked components couldn't be replaced immediately. Such circumstances lead to the requirement of assessing the dynamic performance of cracked functionally graded structural components especially under moving objects. The present study aims to comprehensively investigate the dynamic behavior of functionally graded cracked Timoshenko beams (FGCTBs) resting on Winkler foundation and subjected to moving load through shear locking free finite elements methodology. The through thickness material distribution is simulated by the exponential gradation law. The geometric discontinuity due to cracks is represented using the massless rotational spring approach. The shear locking phenomena is avoided by using the different interpolation functions orders for both deflections and rotations. Based on Timoshenko beam element, a shear locking free finite elements methodology is developed. The unconditionally stable Newmark procedure is employed to solve the forced vibration problem. Accuracy of the developed procedure is verified by comparing the obtained results with the available results and an excellent agreement is found. Parametric studies are conducted to explore effects of the geometrical, material characteristics, crack geometrical characteristics, the elastic foundation parameter, and the moving load speed on the dynamic behavior for different boundary conditions. Obtained results revealed the significant effect these parameters on the dynamic performance of FGCTBs.

Behavior of semi-rigid steel frames under near- and far-field earthquakes

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.625-641
    • /
    • 2020
  • The realistic modeling of the beam-column semi-rigid connection in steel frames attracted the attention of many researchers in the past for the seismic analysis of semi-rigid frames. Comparatively less studies have been made to investigate the behavior of steel frames with semi-rigid connections under different types of earthquake. Herein, the seismic behavior of semi-rigid steel frames is investigated under both far and near-field earthquakes. The semi-rigid connection is modeled by the multilinear plastic link element consisting of rotational springs. The kinematic hysteresis model is used to define the dynamic behavior of the rotational spring, describing the nonlinearity of the semi-rigid connection as defined in SAP2000. The nonlinear time history analysis (NTHA) is performed to obtain response time histories of the frame under scaled earthquakes at three PGA levels denoting the low, medium and high-level earthquakes. The other important parameters varied are the stiffness and strength parameters of the connections, defining the degree of semi-rigidity. For studying the behavior of the semi-rigid frame, a large number of seismic demand parameters are considered. The benchmark for comparison is taken as those of the corresponding rigid frame. Two different frames, namely, a five-story frame and a ten-story frame are considered as the numerical examples. It is shown that semi-rigid frames prove to be effective and beneficial in resisting the seismic forces for near-field earthquakes (PGA ≈ 0.2g), especially in reducing the base shear to a considerable extent for the moderate level of earthquake. Further, the semi-rigid frame with a relatively weaker beam and less connection stiffness may withstand a moderately strong earthquake without having much damage in the beams.

Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire

  • Bidgoli, M. Rabani;Saeidifar, M.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.119-127
    • /
    • 2017
  • Time-dependent buckling of embedded straight concrete columns armed with Silicon dioxide($SiO_2$) nano-particles exposed to fire is investigated in the present study for the fire time. The column is simulated mathematically with Timoshenko beam model. The governing mass conservation equations to describe heat and moisture transport in concrete containing free water, water vapor, and dry air in conjunction with the conversion of energy are considered. The characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the critical buckling load and critical buckling time of structure. The influences of volume percent of $SiO_2nano-particles$, geometrical parameters, elastic foundation and concrete porosity are investigated on the time-dependent buckling behaviours of structure. Numerical results indicate that reinforcing the concrete column with $SiO_2nano-particles$, the structure becomes stiffer and the critical buckling load and time increase.

Effects of edge crack on the vibration characteristics of delaminated beams

  • Liu, Yang;Shu, Dong W.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.767-780
    • /
    • 2015
  • Delaminations and cracks are common failures in structures. They may significantly reduce the stiffness of the structure and affect their vibration characteristics. In the present study, an analytical solution is developed to study the effect of an edge crack on the vibration characteristics of delaminated beams. The rotational spring model, the 'free mode' and 'constrained mode' assumptions in delamination vibration are adopted. This is the first study on how an edge crack affects the vibration characteristic of delaminated beams and new nondimensional parameters are developed accordingly. The crack may occur inside or outside the delaminated area and both cases are studied. Results show that the effect of delamination length and thickness-wise location on reducing the natural frequencies is aggravated by an increasing crack depth. The location of the crack also influences the effect of delamination, but such influence is different between crack occurring inside and outside the delaminated area. The difference of natural frequencies between 'free mode' and 'constrained mode' increases then decreases as the crack moves from one side of the delaminated region to the other side, peaking at the middle. The analytical results of this study can serve as the benchmark for FEM and other numerical solutions.

A study on the member forces of segmental linings considering key segments (TBM 세그먼트 조립 특성에 따른 부재력 변화 연구)

  • Woo, Seungjoo;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.363-382
    • /
    • 2015
  • This paper presents a numerical study on the effect of segment assembly characteristics on the TBM segmental lining member section forces. Analyses have been carried out through the two-ring beam finite element model by Midas civil 2012+. TBM segment lining member forces are determined by various joint characteristics. In this study, the segmental member forces were investigated with various joint number and orientation at fixed values of joint stiffness, ground spring parameters. The numerical results were used to identify trends of the member forces in the tunnel lining with the segment assembly characteristics.