• 제목/요약/키워드: beam-column subassemblage

검색결과 17건 처리시간 0.027초

철근콘크리트 보통모멘트 골조의 슬래브-보-기둥 부재의 구조성능 평가 (Structural Performance Evaluation of Slab-Beam-Column Subassemblage in R/C Ordinary Moment Frame Building)

  • 유혁상;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.757-762
    • /
    • 2000
  • The purpose of this study is to investigate the performance of slab-beam-column subassemblage in the Ordinary Moment Frame(OMF). For this purpose, 3-story building was designed according to UBC and ACI building code(ACI 318-99) and the subassemblages of in the first story were constructed. The subassemblages were classified into interior and exterior. Each interior and exterior subassemblage is modeled by the 2/3 scale experimental specimens. All the specimens have the transverse beam and the columns on the slab have the lap splice as the typical exterior and interior slab-beam-column subassemblage. The interior subassemblage was tested under the constant axial force, while the exterior subassemblage was tested under the fluctuating axial force. Based on the results of the experiments, the performance of each subassemblage is evaluated and the failure mode is investigated.

  • PDF

비내진 상세를 가진 RC 보-기둥 접합부의 거동 (Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints)

  • 이한선;우성우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.133-140
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the Joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior Joint caused the 10%~20% reduction of strength and 27% reduction of ductility iii comparison with tile case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.n.

  • PDF

Monotonic Loading Tests of RC Beam-Column Subassemblage Strengthened to Prevent Progressive Collapse

  • Kim, Jinkoo;Choi, Hyunhoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.401-413
    • /
    • 2015
  • In this study the progressive collapse resisting capacity of a RC beam-column subassemblage with and without strengthening was investigated. Total of five specimens were tested; two unreinforced specimens, the one designed as gravity load-resisting system and the other as seismic load-resisting system, and three specimens reinforced with: (i) bonded strand, (ii) unbonded strand, and (iii) side steel plates with stud bolts. The two-span subassemblages were designed as part of an eight-story RC building. Monotonically increasing load was applied at the middle column of the specimens and the force-displacement relationships were plotted. It was observed that the gravity load-resisting specimen failed by fractures of re-bars in the beams. In the other specimens no failure was observed until the maximum displacement capacity of the actuator was reached. Highest strength was observed in the structure with unbonded strand. The test result of the specimen with side steel plates in beam-column joints showed that the force-displacement curve increased without fracture of re-bars. Based on the test results it was concluded that the progressive collapse resisting capacity of a RC frame could be significantly enhanced using unbonded strands or side plates with stud bolts.

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동 (Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints)

  • 우성우;이한선
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.894-901
    • /
    • 2003
  • 본 연구의 목적은 비내진 상세를 가진 RC 구조물의 이력거동 특성과 내진성능 및 특성을 알아보기 위한 것이다. 이를 위해 10층 RC구조물의 내 외부 접합부를 선정하여 슬래브의 유무, 접합부내에서의 전단철근 유무, 외부 접합부의 보 하부 주근의 정착방향에 따라 6개의 1/3 축소 실험체를 만들어 반복횡하중 실험을 수행하였다. 실험결과 내부 접합부의 경우 슬래브의 유무에 관계없이 내진 비내진 상세의 상이에 따른 강도나 연성 능력의 변화는 크지 않는 것으로 나타났고, 외부 접합부의 경우 내부 접합부와는 달리 접합부 전단 보강근의 유무뿐만 아니라 하단 주철근 정착방향에서도 차이가 나기 때문에 비내진 상세의 강도나 연성 능력이 각각 10∼20%와 27% 정도 작은 것으로 나타났다. 또, 비내진 상세를 가지는 경우 국부 변형이 한 곳에서 집중되어 크게 나타남을 알 수 있으며, 슬래브가 있음으로 인해 휨에 의한 회전각을 억제하고 상향 전단변형을 억제하는 것으로 나타났다. 한편 보-기둥 접합부에서의 전단 보강근은 전단변형률에 거의 영향을 끼치지 않는 것으로 나타났다.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

깊은 보와 내부기둥 접합부에 대한 실험과 해석의 상관성 (Correlation of Experimental and Analytical Responses of Interior Deep-Beam Lower-Column Joint)

  • 우성우;이한선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.708-711
    • /
    • 2004
  • A typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblage including the interior column and the deep beam, were constructed. The transverse reinforcement was designed according to ACI procedure and the procedure proposed by Sheikh. In this study, the correlation between the experimental and analytical responses of the subassemblages subjected to the cyclic lateral displacement were evaluated through investigation of lateral load-lateral deformation, local deformation characteristics by using a nonlinear FEM analysis program RCAHEST.

  • PDF

Experimental study on the deformation characteristics of RC beam-column subassemblages

  • Guo, Zixiong;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.393-406
    • /
    • 2005
  • Cyclic loading tests were carried out on six half-scale reinforced concrete beam-column subassemblages designed to the current Chinese Seismic Design Code for Buildings. The deformation behavior and restoring force characteristics of the subassemblages were studied. Emphasis was directed on their seismic behavior and deformation components. Based on test data and a simplified analysis model of the global and local deformation, the contribution of the deformation components due to beam flexure, column flexure, joint shear, and slippage of longitudinal reinforcement in the joint to the global deformation of subassemblages at different displacement amplitudes of cyclic loading was investigated.

비내진 상세를 가진 1/3 축소 R.C. 외부 접합부의 반복 횡하중 실험 (Cyclic-loading Tests of 113-Scale R.C. Exterior Beam-column Joints With Non-Seismic Detailing)

  • 이한선;차병기;고동우;임동운
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with nonseismic detailing. To do this, an exterior beam-column subassemblage was selected from a 10-story RC building and 6 1/3-scale specimens were manufactured with 3 variables; ⑴ with and without slab, ⑵ upward and downward direction of anchorage for the bottom bar in beams, and ⑶ with and without hoop bars in the joint region. The test results have shown that ⑴ the existence of slab increased the strength in positive and negative moment, 25% and 62%, respectively; ⑵ the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation when compared with the case of seismic details; and ⑶ the existence of hoop bars in the joint region does not show significant difference because the size of column is much larger than that of beam.m.

  • PDF

주상복합구조에서 전이보와 외부기둥 접합부의 반복횡하중 실험 (Cyclic-Loading Test of Exterior Deep-Beam Lower-Column Joint in Upper-Wall Lower-Frame Structure)

  • 이한선;김상연;고동우;권기혁;최성모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.851-856
    • /
    • 2000
  • When subjected to the strong earthquake ground motion, upper-wall lower-frame structures have high possibility of the weak-story failure in the lower frame part. Sufficient strength, energy dissipation capacity and ductility should be provided at the joint between the deep beam and the lower column. In this study, a typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblage including the exterior column and the deep beam, were constructed. The transverse reinforcement was designed according to ACI procedure¹ and the procedure proposed by Sheikh². The inelastic behavior of the subassemblages subjected to the cyclic lateral displacement were evaluated through investigation of the ultimate strength, ductility, load-deformation characteristics. From the test of 4 specimens, it is concluded that the specimens designed according to Sheikh's procedure revealed higher ductility than that by ACI procedure.