• 제목/요약/키워드: beam structures

검색결과 3,329건 처리시간 0.027초

Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Computers and Concrete
    • /
    • 제5권1호
    • /
    • pp.37-60
    • /
    • 2008
  • Structural health monitoring of existing infrastructure is currently an important field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical and important structures. The paper outlines two methods of system identification of beam-like reinforced concrete structures representing bridges, through static measurements, in a distributed damage scenario. The first one is similar to the stiffness method, re-cast and the second one to flexibility method. A least square error (LSE) based solution method is used for the estimation of flexural rigidities and damages of simply supported, cantilever and propped cantilever beam from the measured deformation values. The performance of both methods in the presence of measurement errors is demonstrated. An experiment on an un-symmetrically damaged simply supported reinforced concrete beam is used to validate the developed method. A method for damage prognosis is demonstrated using a generalized, indeterminate, propped cantilever beam.

보-스트링 구조의 횡 좌굴에 관한 연구 (A Study on Lateral Buckling of Beam String Structures)

  • 김재열
    • 한국공간구조학회논문집
    • /
    • 제13권4호
    • /
    • pp.49-56
    • /
    • 2013
  • Beam string structures(BSS) are one kind of efficient structure system because the bending moment in the beams is reduced greatly through the struts and the strings. As the struts in BSS are used as middle supports to the beam and always in compression, the buckling of the struts should be avoided. This paper investigates the lateral buckling of the struts in BSS. Firstly, the strut of a one-strut BSS is simplified into an analytical model by considering load is formulated and some special cases of the model are analyzed. Finally, the lateral buckling load of the strut is numerically examined by means of parameter studies. It is known that, because on end of the struts is jointed to the beam while the other end is connected to the strings, the buckling of the struts not only depends on the length of the struts and the stiffness of the joints, but also depends on the rise and the lateral stiffness of the beam, the layout of the strings and the number of the struts.

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링 (Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations)

  • 이창호;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Influence of surface geometrical structures on the secondary electron emission coefficient $({\gamma})$ of MgO protective layer

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jeong, J.C.;Kim, S.B.;Cho, I.R.;Cho, J.W.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.806-809
    • /
    • 2003
  • Ion-induced secondary electron emission coefficient $({\gamma})$. of the patterned MgO thin film with geometrical structures has been measured by ${\gamma}$ - FIB(focused ion beam) system. The patterned MgO thin film with geometrical structures has been formed by the mask (mesh of ${\sim}$ $10{\mu}m^{2})$ under electron beam evaporation method. It is found that the higher ${\gamma}$. has been achieved by the patterned MgO thin film than the normal ones without patterning.

  • PDF

Flexural behavior of UHPC-RC composite beam

  • Wu, Xiangguo;Lin, Yang
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.387-398
    • /
    • 2016
  • In order to evaluate the effects of U shape ultra high performance concrete (UHPC) permanent form on the behaviors of Reinforced Concrete (RC) beam, a full scale RC composite beam is designed and tested with U shape UHPC permanent form and a reference RC beam with same parameters is tested simultaneously for comparison. The effects of the permanent form on the failure mode, cracking strength, ultimate capacity and deformation are studied. Test results shows that the contributions of the U shape UHPC permanent form to the flexural cracking behaviors of RC beam are significant. This study may provide a reference for the design of sustainable RC beam with high durable UHPC permanent form.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

양방향 BSS 구조의 형상 매개 변수 연구 (Geometrical Parametric Study on Two-Way Beam String Structures)

  • 이승혜;서민희;박상은;김선명;이기학;이재홍
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.69-76
    • /
    • 2019
  • A Beam String Structure (BSS) is a type of hybrid structures, which is composed of upper structural members, lower strings, and struts. Due to the advantages that the pre-tensioned strings elicit pre-caber of the upper structural members, the deflection can be greatly reduced without increasing the structural member size. In this study, a two-way beam string structure is proposed to endure bi-directional loading. The two-way beam string structure consists of two cable parts, namely, sagging and arch-shaped cables. A parametric study is presented aimed at proposing design guide lines of the two-way beam string structures. Numerical finite element analyses through the ABAQUS package were implemented to obtain their behaviors.

연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능 (Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate)

  • 조창근;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.