• Title/Summary/Keyword: beam model

Search Result 3,455, Processing Time 0.031 seconds

Structural design method of the steel brush type loading platen adopted in multi-axial compression experiments (다축압축 실험에 적용되는 철제 빗살구조 재하판의 구조 설계 기법)

  • SaGong, Myung;Lee, Jun-S.;Kim, Sung-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2007
  • Multi-axial compression tests have been frequently conducted to evaluate the in situ properties of rock masses and the mechanical behaviors of rock strata through the model tests. Without the proper boundary condition for the model tests, the mechanical behavior of rock mass would deviate, as can be expected, from the in situ conditions. The boundary condition will affect the internal stress distribution of the specimens and cause some distortion on the measurement. In this study, a design process regarding the steel brush, which has been employed for multi-axial compression test to reduce the frictional restraint along the specimen/loading platen interface, is introduced. The individual brushes are regarded as a simple column and beam to calculate the cross-sectional size and length of the brushes in consideration of the buckling capacity and the allowable deflection.

  • PDF

On the Suitable Shape of Bottom for the Application of Air Cavity on Hull Bottom to the Practical Hull Form (선저부 공기공동을 이용한 실선선형의 저항성능 개선을 위한 선저형상 개량연구)

  • Seok-Cheon Go;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • This paper describes the modification of hull bottom for the air lubrication technique to the passenger boat in service at the Chung-Ju lake, which has a large beam-draft ratio. From numerical analysis of 2-D cavity problem by potential theory, the cavity shape, length and the pressure in cavity are estimated for the simplified geometry of hull bottom, and the non-dimensional parameters affecting air cavity phenomena are investigated. Extensive resistance tests for the model ship which has variation of step height and side strip have been performed to investigate the formation of air cavity and the drag reduction effectiveness. And also, the development of attached cavity to the bottom were observed from the flat bottom made by transparent acrylic plate. From this survey on the modification of bottom shape and the air lubrication technique, the total resistance of model ship could be reduced by about 25% at the design speed compared to the proto type hull form.

  • PDF

High power tunable Ti:sapphire laser with sub-40fs pulsewidth (40펨토초 미만 펄스폭의 고출력 파장가변 티타늄사파이어 레이저)

  • 임용식;노영철;이기주;김대식;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.430-438
    • /
    • 1999
  • We have utilized soft-aperturing by gain media to develop a high-power tunable Ti:Sapphire laser with sub-40-fs and broad tuning range. The tunable spectral range was only limited by the bandwidth of mirrors. We made use of knife-edge slits near an intra-cavity prism controlled by micro-stepping-motors to tune the center wavelength continuously. The tunability of the center wavelength was ranged from 770 nm to 870 nm, and the measured pulsewidth was sub-40 fs throughout the above spectral range. The shortest pulsewidth was about 17 fs at the center wavelength of 820 nm and the spectral bandwidth was 72 nm. At 5 W pumping power of the Ar-ion laser we obtained average output power of 440 mW~580 mW. For the cw and Kerr-lens mode-lodking conditions, we have evaluated the value of an amplitude modulation to be ${\gamma}=2.5{\times}10^{-8}/W$ from the calculated waists of a Gaussian beam on the Ti:sapphire crystal surface. Using this result we demonstrate that the generation of sub-40-fs Kerr-lens mode-locked pulse can be described by the Ginzberg-Landau model which is a weak pulse shaping model.

  • PDF

Side-Aspect Target Strength Measurement of Swimbladdered Fish Using Multi-Frequencies System: Black Sea Bream (Acanthopagrus schlegeli)

  • Cho, Sung-Ho;Kang, Don-Hyug;Na, Jung-Yul;Myoung, Jung-Goo;Kim, Jong-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.101-109
    • /
    • 2006
  • Besides dorsal-aspect target strength (TS) of the fish, side-aspect TS information is also acoustically important parameter in fisheries acoustics. In this study, the side-aspect TS of 11 black sea bream (Acanthopagurus schlegeli) were measured using a split beam echosounder of 120, 200, and 420 kHz; total length of the fish ranged from 12.4 to 23.7 cm, and wet weight from 27.5 to 229.8g. For the precise TS measurement with side-aspect angle, we used anesthetized and tethered specimens of known size while being rotated through $360^{\circ}C$ by means of a carousel structure. The side-aspect TS measurements of the fish were conducted by rotating the fish in the horizontal plane at 50 interval. The ping interval was 0.2 second and elapsed time at each angle was 30-60 second. As a result, the measured side-aspect TS data were fitted by sinusoidal function. The relationships between fish length and near full side-aspect TS were as follows: $TS_{120kHz}= 21.46 log (TL)-67.5 (r = 0.70), \;TS_{200 kHz}= 31.03 log (TL)-76.9 (r=0.83),\;TS_{420 kHz}= 30.79 log (TL)-72.2 (r = 0.77)$. For comparison, theoretically estimated side-aspect TS from the Kirchhoff ray mode (KRM) model, which based on swimbladder and body morphology, were compared with the measured TS.

Damage Detection of Bridge Structures Considering Uncertainty in Analysis Model (해석모델의 불확실성을 고려한 교량의 손상추정기법)

  • Lee Jong-Jae;Yun Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.125-138
    • /
    • 2006
  • The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in data acquisition system andinformation processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, damage detection of bridge structures using neural networks technique based on the modal properties is presented, which can effectively consider the modeling uncertainty in the analysis model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness and applicability of the proposed method.

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

FEA of Beam-Column Connection with Bolted Web (웨브를 볼트로 접합한 보-기둥 접합부의 유한요소해석)

  • Shin, Kyung-Jae;Lim, Bo-Hyuk;Lee, Swoo-Heon;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.305-316
    • /
    • 2011
  • As the building structures are higher and bigger, the high-performance steels of high strength, toughness, and low yield ratio had been required and developed. In this paper the behavior of the moment connection with bolted web and high strength steel was studied by using the finite-element analysis computer program of ABAQUS. The analysis model is based on the test results and the same cyclic load history was applied at the FE(Finite Element) model until it failed in the test. Through the FEA, several indicators hardly measured from the test were acquired. These indicators related to stress and strain were selected from three plastic rotation stages: 0.003 rad, 0.03 rad, and final failure rotation. Specifically, at the final failure stage, the strain indicators producing the full plastic behavior were suggested as a mechanical property for steel.

Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 이정윤;박지선
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1010-1021
    • /
    • 2002
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. Some test results indicated that the current ACI code was not successful in predicting the observed torsional moment of the RC beams with reasonable accuracy. The research reported in this paper provides an evaluation equation to predict the torsional moment of the RC beams subjected to pure torsion. The proposed equation is derived from the equilibrium as well as compatibility equations of the truss model for the cracked RC beams. Comparisons between the observed and calculated torsional moments of the 66 tested beams, showed reasonable agreement.

Structural Optimization for LMTT-Mover Using the Kriging Based Approximation Model (크리깅 근사모델 모델을 이용한 LMTT 이동체의 구조최적설계)

  • Lee, Kwon-Hee;Park, Hyung-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.385-390
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PLMSL (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, the DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the structural responses. Then, the GRG(Generalized Reduced Gradient) method built in Excel is adopted to determine the optimum. The objective function is set up as weight. On the contrary, the design variables are considered as transverse, longitudinal and wheel beam's thicknesses, and the constraints are the maximum stresses generated by four loading conditions.

  • PDF

Prediction of the Shear Strength of FRP Strengthened RC Beams (II) - Verification and parametric study - (FRP로 보강된 철근 콘크리트보의 전단강도 예측 (II) - 모델 검증 및 변수연구 -)

  • Sim Jong-Sung;Park Cheol-Woo;Moon Do-Young;Sim Jae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.353-359
    • /
    • 2005
  • To evaluate the proposed shear strength models developed in a companion paper, the shear strengths of test specimens strengthened with FRP were predicted by ACl specification, and elsewhere. The advantage and disadvantage of the models were investigated by the comparisons with the test results. The characteristics and limitations of the existing model were investigated with respect to FRP types, strengthening methods, shear span to depth ratio and effective strength of FRP. The results of this parametric study showed that the proposed shear strength model is more accurate than other models.