• 제목/요약/키워드: beam members

검색결과 717건 처리시간 0.022초

축력과 휨 모멘트를 받는 RC 부재의 CFRP 시트 보강에 따른 성능 평가 (Evaluation of Performance of CFRP Sheet Reinforcement on RC Members Subjected to Axial Load and Flexural Moment)

  • 배찬영;이지형;김상우;김진섭
    • 대한토목학회논문집
    • /
    • 제43권5호
    • /
    • pp.567-576
    • /
    • 2023
  • 일반적으로 RC 보 부재는 휨 부재로서 휨 하중에 대해서만 고려하여 설계된다. 하지만, 실제 건축물에서는 부재 간의 연속성으로 인해 축력과 휨 하중을 동시에 받게 된다. 이로 인해 RC 보 부재의 휨 강도는 증가하지만, 변위는 감소하며, 균열은 주로 보의 중앙부에 집중되게 된다. 따라서 본 연구에서는 축력과 휨 하중을 동시에 받는 RC 보 부재에 탄소섬유시트를 이용한 보강에 따른 휨 성능을 실험적으로 평가하였다. 탄소섬유시트는 부재의 중앙부에 감싸 보강을 하였으며, 축력과 휨 하중을 부재에 가력하였다. 축력의 크기와 탄소섬유시트 보강에 따른 철근콘크리트 부재의 파괴 형태, 휨 강도, 처짐 및 연성을 분석하였다. 그 결과, 축력의 증가에 따라 최대 휨 강도의 상승이 발생하였지만, 연성은 최대 64%까지 감소하였다. 탄소섬유시트 보강을 통해 휨 강도는 최대 27% 증가하였으며, 휨에 의한 보의 최대 처짐은 8% 감소하였으며 연성은 최대 43% 증가하였다.

Cracking in reinforced concrete flexural members - A reliability model

  • Rao, K. Balaji;Rao, T.V.S.R. Appa
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.303-318
    • /
    • 1999
  • Cracking of reinforced concrete flexural members is a highly random phenomenon. In this paper reliability models are presented to determine the probabilities of failure of flexural members against the limit states of first crack and maximum crackwidth. The models proposed take into account the mechanism of cracking. Based on the reliability models discussed, Eqs. (8) and (9) useful in the reliability-based design of flexural members are presented.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

그린프레임 현장생산용 거푸집 시스템 개발을 위한 구조설계 절차 (A Process for Structural Design of Form System for in-situ Production of Green Frame)

  • 임채연;김근호;나영주;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.29-30
    • /
    • 2012
  • The precast concrete column-beam structure, Green Frame, allows the main structural members such as precast concrete column and beam to be produced on the site, resulting in a reduction of transportation cost and the margin of plant. However, existing plywood from for in-situ production of precast concrete members has problems like putting in inordinate human resource, falling-off in quality and workability. To solve those problems, form system for in-situ production of precast concrete members shall be developed. In this regard, this study aims to analyze the structural concept of from system for in-situ production. The result of this study will use for development of form system for in-situ production.

  • PDF

Vibration behaviour of axially compressed cold-formed steel members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.221-236
    • /
    • 2006
  • The objective of this work is to describe the main steps involved in the derivation of a GBT (Generalised Beam Theory) formulation to analyse the vibration behaviour of loaded cold-formed steel members and also to illustrate the application and capabilities of this formulation. In particular, the paper presents and discusses the results of a detailed investigation about the local and global free vibration behaviour of lipped channel simply supported columns. After reporting some relevant earlier GBT-based results dealing with the buckling and vibration behaviours of columns and load-free members, the paper addresses mostly issues concerning the variation of the column fundamental frequency and vibration mode nature/shape with its length and axial compression level. For validation purposes, some GBT-based results are also compared with values obtained by means of 4-node shell finite element analyses performed in the code ABAQUS.

스트럿 부재와 융합단면을 이용한 기둥-보 강결 구조물 해석 (Analysis of Beam-column Joints in a Structure using Strut Members and Composite Section)

  • 조재형;송재호
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.289-299
    • /
    • 2020
  • The composition of convergence cross-section of the material is a technique that provides reasonable design and construction of structures. It is frequently used in medium-sized bridges and architectural structures. However, the structural behavioral spare capacity enhancement of the structure by the application of the convergence cross-section is still limited by the expandability due to the limiting state of each material. In order to overcome these limitations, this study reasonably analyzed the construction stages before and after the convergence cross-section constructed and developed a technique for forming multi-point boundary conditions using struts, which are compression members. Based on the existing cases, a reasonable construction step for forming the material composite section of the entire structural system of the structure was derived, and a numerical analysis model for a specific part was constructed to analyze the behavior of the strut application. As a result of this study, the effect of reducing the sectional force of 7.40% in beam-column joint and 6.31% in the center of girder was derived, and the deflection, which is a measure of the serviceability of the structure, improved by 54.41% from the installation and dismantling of strut members at each construction stage.

Study on the Evaluation of Performance for Pitch Pine Round Timbers as Safety Barrier Beam Members

  • Lim, Jin-Ah;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.390-397
    • /
    • 2011
  • In this study, bending test was conducted as beam members in timber roadside safety barrier. The flexural properties of pitch pine round timber according to the diameters were evaluated. And then grading based on the growth characteristics applied to choosing the pitch pine round timbers which is met the criteria of guideline (Japan, 2008). MOR of round timber 160 mm is higher than other specimens from 100 mm to 140 mm. Because of lower juvenile wood ratio and higher density. The MOE of round timber is decreased according to the increment of diameter. Only 32% of the specimens has passed the limitations. Performance of pitch pine round timbers has confirmed to suitability roadside safety beam members according to the guideline (Japan, 2008).

브라켓 및 H-빔 부재가 성수대교 붕괴에 미친 영향 (Effect of Bracket and H-beam Members on the Sungsoo Grand Bridge)

  • 조효남;임종권;안중산
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.422-430
    • /
    • 1998
  • This paper presents the results of a major parametric study on the collapse cause of the Sungsoo Grand Bridge, a Gerber-type continuous truss bridge, which had collapsed just at the 15th year since opening to traffic. Among the various collapse causes such as poor design, poor welding, poor maintenance, and heavy traffic loads, this study focuses on the collapse cause assessment incorporating the effects of braket and H-beam members right below the expansion joint of the suspended truss. A local FEM analysis using fine shell elements is carrided out for the more precise estimation of stress range of the vertical pin-connected hanger whose fatigue fracture triggered the collapse of the bridge. Both the conventional S-N approach and the Ang-Munse's fatigue reliability method are used for the evaluation of the fatigue life and fatigue failure probability for the assessment based on all the available results of various field and labolatory tests. From these observations, It may be affirmatively stated that the effects of bracket and H-beam members accelerated the fatigue failure, and thus should be regarded as one of major causes that triggered the bridge collapse

  • PDF

2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가 (The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges)

  • 배두병;조준희
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.