• Title/Summary/Keyword: beam interaction

Search Result 554, Processing Time 0.026 seconds

Simulation of Interaction Forces between Two Ships Considering Ship's Dimension (선박의 크기를 고려한 두 선박의 간섭력에 관한 시뮬레이션)

  • Lee, Sang-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.47-54
    • /
    • 2017
  • This paper analyzed the motion characteristics of two ships according to the ship's dimension using Ship Handling Simulator. When the panamax container ship passes the smaller ship, peak point and patterns of interaction forces for the moored ship are noticeable. Accordingly, special attention should be paid to the movements of moored ship because surge force and yaw moment changes in the opposite direction before and after condition of ship's beam. However, when the container ship passes the larger moored ship in reverse, peak point stood out on the passing ship at the beginning of ship-to-ship interaction and attraction force on the passing ship occurred steadily during 1L(length overall of passing ship) interval at a point of beam. In addition, as the lateral distance between the hull of two ships decreases less than 2B(breadth of passing ship), interaction forces on the passing ship at the beginning are sharply increase.

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Foundation Modeling Considering the Soil-Structure Interaction (지반-구조물 상호작용을 고려한 기초모델링)

  • Lee, Yong-Jei;Kim, Tae-Jin;Maria, Feng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • Even with its significant influence on the dynamic analysis and foundation design of structures, sometimes the soil-structure interaction has been ignored during the design process. One of the reasons is due to the fact that the modeling procedures are too complicated to meet the requirements in practice. In this study, using the Cali(IT)2 building in California with high and frequent seismic activities, the analysis differences for different boundary conditions are reviewed. The Beam on Nonlinear Winkler Foundation Model, one of the foundation modeling methods, is modified for easy use by the Linear Matrix Inequalities Model Reduction Technique. The product of the proposed process is applied to create the Finite Element Model. The results show fairly good agreement with the real data acquired from the Cal(IT)2 building.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

An Adaptive Beam Tracing for Visual Simulation of Ray Propagation in Wireless Communications Systems

  • Makino, Mitsunori;Xiaoyi, Cao;Shirai, Hiroshi;Shinoda, Shoji;Kawakita, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.54-57
    • /
    • 2002
  • In this paper, an adaptive beam tracing method with revised subdivision technique is proposed, in which the beam is generated by a set of three rays. According to reflection and/or refraction of the rays on the buildings and/or ground, additional rays are generated adaptively and the beam is subdivided efficiently and automatically. After generation of the set of beams, we transform the electromagnetic wave propagation data into volume data. Then one can visualize the data of propagation with reflection, refraction and interaction in full three dimensional space at any viewpoint by the so-called ray casting algorithm, which is one of the most useful methods in compute. graphics(CG).

  • PDF

Towards a consistant safety format of steel beam-columns: application of the new interaction formulae for ambient temperature to elevated temperatures

  • Vila Real, P.M.M.;Lopes, N.;Simoes da Silva, L.;Piloto, P.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.383-401
    • /
    • 2003
  • Two new formulae for the design of beam-columns at room temperature have been proposed into Eurocode 3, prEN 1993-1-1 (2002), and are the result of great efforts made by two working groups that followed different approaches, a French-Belgian team and an Austrian-German one. Under fire conditions the prEN 1993-1-2 (structural fire design) presents formulae, for the design of beam-columns based on the prENV 1993-1-1 (1992). In order to study the possibility of having, in part 1-1 and part 1-2 of the Eurocode 3, the same approach, a numerical research was made using the finite element program SAFIR, developed at the University of Liege for the study of structures subjected to fire.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

New formulation for vibration analysis of Timoshenko beam with double-sided cracks

  • Ayatollahi, M.R.;Hashemi, R.;Rokhi, H.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.475-490
    • /
    • 2010
  • It is the intention of this study to synthesize the effects of double-edge cracks on the dynamic characteristics of a beam. The stiffness matrix is first determined for a Timoshenko beam containing two same-line edge cracks. The presented model is then developed for elements with two parallel double-sided cracks, considering the interaction between the stress fields of adjacent cracks. Finally, a finite element code is implemented, to examine the influence of depth and location of double cracks, on the natural frequencies of the damaged system.

Efficient Design Procedure of Concrete Dome and Ring Beam in Containment Structures (콘크리트 격납구조물 돔 및 링빔의 효율적인 설계 기법)

  • Jeon, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.139-140
    • /
    • 2010
  • Combined analysis is required for the concrete dome and ring beam of containment structure due to the interaction in section forces. In this study, an efficient design procedure is proposed that can be used to determine the preliminary sections of the dome and ring beam as well as a proper level of prestress in the ring beam, prior to a detailed design. The procedure applies the membrane theory of the shell of revolution.

  • PDF

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Nikolic, Mijo
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.43-59
    • /
    • 2018
  • The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.