• Title/Summary/Keyword: beam growth

Search Result 585, Processing Time 0.028 seconds

Si기판을 이용한 대면적 CdTe 박막의 MOCVD성장

  • Kim, Gwang-Cheon;Im, Ju-Hyeok;Yu, Hyeon-U;Jeong, Gyu-Ho;Kim, Hyeon-Jae;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.275-275
    • /
    • 2009
  • CdTe(331)/Si(211) and CdTe(400)/Si(100) thin films have been grown by MOCVD(metal organic chemical vapor deposition) system for large scale of IFPAs(IR focal plane arrays). We have investigated the effect of various growth parameters on the surface morphology and structural quality. Single crystalline CdTe(331) films were grown by two stage growth method - low temperature buffer layer step and high temperature growth step. In other case, single crystal of CdTe(400) films were grown on a few atomic layer thickness of GaAs which is grown on Si(100) substrate by molecular beam epitaxy. The crystalline quality of the films was analyzed by X-ray diffraction. The surface morphology and crystal structure of CdTe films were characterized by optical microscope.

  • PDF

Optimization of Selective Epitaxial Growth of Silicon in LPCVD

  • Cheong, Woo-Seok
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.503-509
    • /
    • 2003
  • Selective epitaxial growth (SEG) of silicon has attracted considerable attention for its good electrical properties and advantages in building microstructures in high-density devices. However, SEG problems, such as an unclear process window, selectivity loss, and nonuniformity have often made application difficult. In our study, we derived processing diagrams for SEG from thermodynamics on gas-phase reactions so that we could predict the SEG process zone for low pressure chemical vapor deposition. In addition, with the help of both the concept of the effective supersaturation ratio and three kinds of E-beam patterns, we evaluated and controlled selectivity loss and non-uniformity in SEG, which is affected by the loading effect. To optimize the SEG process, we propose two practical methods: One deals with cleaning the wafer, and the other involves inserting dummy active patterns into the wide insulator to prevent the silicon from nucleating.

  • PDF

Effects of AlN Ratio on Microstructure of AlN Films Grown by PAMBE (PAMBE를 이용하여 성장된 AlN 박막의 미세구조에 미치는 Al/N 비율 영향)

  • 홍성의;한기평;백문철;조경익;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.972-978
    • /
    • 2001
  • Some effects of Al/N ratio on microstructure of AlN films grown on Si(111) substrates by PAMBE were investigated. Al/N ratio was controlled by rf power of N$_2$ plasma source system. Al excess or N excess conditions were obtained below or above 350 W rf power, respectively. Surface roughness and morphology of AlN film grown at Al/N=1.0 showed the best result. Under Al excess condition, it was suggested that excess Al atoms which did not contribute to the growth of AlN film prevent the normal crystal growth and make abnormal growth of some columns. However, under N excess condition, it was explained that some of the excess active N source turned into gas state and then desorbed out from substrate.

  • PDF

A Study on the Thermal Stability in Multi-Aluminum Thin Films during Isothermal Annealing (등온 열처리시 알루미늄 다층 박막의 열적 안정성에 관한 연구)

  • 전진호;박정일;박광자;김홍대;김진영
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.196-205
    • /
    • 1991
  • Multi-level thin films are very important in ULSI applications because of their high electromigration resistance. This study presents the effects of titanium, titanium nitride and titanium tungsten underlayers of the stability of multi-aluminum thin films during isothermal annealing. High purity Al(99.999%) films have been electron-beam evaporated on Ti, TiN, TiW films formed on SiO2/Si (P-type(100))-wafer substrates by RF-sputtering in Ar gas ambient. The hillock growth was increased with annealing temperatures. Growth of hillocks was observed during isothermal annealing of the thin films by scanning electron microscopy. The hillock growth was believed to appear due to the recrystallization process driven by stress relaxation during isothermal annealing. Thermomigration damage was also presented in thin films by grain boundary grooving processes. It is shown that underlayers of Al/TiN/SiO2, Al/TiW/SiO2 thin films are preferrable to Al/SiO2 thin film metallization.

  • PDF

Epitaxial Growth of Rare-earth Ion Doped $CaF_2$ layers by MBE

  • Ko, J.N.;Chen, Y.;Fukuda, T.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.3-7
    • /
    • 1998
  • The rare-earth ions (R3+, R=Nd, Er) doped CaF2 layers have been grown on CaF2(111) substrate by molecular beam epitaxy. The epitaxial relationship and the crystallinity of CaF2:R3+ layers depending on the concentration of R3+ were studied by reflection high-energy electron diffraction (RHEED). In aspect of application as buffer layer in semiconductor-related hybrid structure, the lattice displacement between CaF2:R3+ layers and CaF2(111) substrate was investigated by X-ray rocking curve analysis.

  • PDF

Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures

  • Kim Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • Metalorganic chemical vapor deposition (MOCYD) techniques have been applied to fabricate semiconducting ZnO thin films and nanostructures, which are promising for novel optoelectronic device applications using their unique multifunctional properties. The growth and characterization of ZnO thin films on Si and $SiO_2$ substrates by MOCYD as fundamental study to realize ZnO nanostructures was carried out. The precise control of initial nucleation processes was found to be a key issue for realizing high quality epitaxial layers on the substrates. In addition, fabrication and characterization of ZnO nanodots with low-dimensional characteristics have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanodots on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing MOCYD in addition with a focused ion beam technique.

Characteristics of BSCCO Thin Film by Layer-by-layer Deposition (순차 스퍼터 법에 의한 BSCCO 박막의 특성)

  • 이희갑;박용필;김귀열;오금곤;최운식;조춘남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.281-283
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$\_$x/(Bi-2201) thin films were fabricated layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to SrBi$_2$O$_4$ by in-situ anneal.

  • PDF

Characteristics of Bi2212 Thin Film Fabricated by Layer-by-Layer Deposition at an Ultra Low Growth rate (초저속 순차증착으로 제작한 Bi2212 박막의 특성)

  • Lee, Hee-Kab;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.119-121
    • /
    • 2002
  • $Bi_2Sr_2CuO_x$ thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method, 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

GaAs Epitaxial Layer Grown by MBE (II) (MBE에 의한 GaAs 에피택셜 성장(II))

  • Kang, Tae Won;Lee, Jae Jin;Kim, Young Ham;Kim, Jin Hwang;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.3
    • /
    • pp.376-383
    • /
    • 1986
  • In this paper, we show that the growth rate of MBE GaAs epitaxial layer is controlled entirely by the flux density of the Ga beam, impinging on the substrate surface, and is linearly proportional to the Ga effusion cell temperature and the growth time. According to our investigation of the epitaxial layer surfvace through RHEED, AES, SIMS and SEM, if the growth temperature is maintained above 590\ulcorner, the surface crystal structure, flathness and stoichiometry become significantly enhanced, and the epilayer surface has a smooth mirror-like appearance.

  • PDF

Sterilizing Effect of Electron Beam on Ginseng Powders (Electron Beam 조사에 의한 인삼분말의 살균효과)

  • Lee, Mi-Kyung;Lee, Moo-Ha;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1362-1366
    • /
    • 1998
  • The sterilizing effect of electron beam was compared with that of gamma irradiation for commercial ginseng powders. White and red ginseng powders were contaminated by about $10^5\;CFU/g$ of total bacteria and by $10^3\;CFU$ of coliforms only in white ginseng powder. Data of microbial population for the sterilizing effect of electron beam irradiation showed that no microorganisms were detected in the samples irradiated up to 7.5 kGy for total aerobic bacteria and 2.5 kGy for molds and coliforms. Such doses were effective for controlling the microbial growth in the samples during 4 months of storage at room temperature. Decimal reduction doses $(D_{10}$ value) on the initial bacterial populations were $2.85{\sim}3.75\;kGy$ in electron beam and $2.33{\sim}2.44\;kGy$ in gamma irradiation, which were influenced by the initial microbial loads and the energy applied. Compared with gamma irradiation, electron beam showed a similar result in its sterilizing effect on ginseng powders, suggesting its potential utilization in due time.

  • PDF