• Title/Summary/Keyword: beam foil

Search Result 58, Processing Time 0.027 seconds

Possibility of Electro-Active Papers (EAPap) Actuators (Electro-Active Papers(EAPap) 작동기의 가능성 연구)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.495-498
    • /
    • 2002
  • Recently, the advent of electro-active papers (EAPap) actuators has been reported. In this paper, the possibility of the actuators is demonstrated. EAPap is a paper that produces large displacement with small force under an electrical excitation. EAPap is made with a chemically treated paper by constructing thin electrodes on both sides of the paper. When electrical voltage is applied on the electrodes the EAPap produces bending displacement. To improve the bending performance of EAPap, different paper fibers-softwood, hardwood, bacteria cellulose, cellophane, carbon mixture paper, electrolyte containing paper and Korean traditional paper, in conjunction with additive chemicals were tested. Two attempts were made to construct the electrodes: the direct use of aluminum foil and the gold sputtering technique. It was found that a cellophane paper exhibits a remarkable bending performance. When 2MV/m of excitation voltage was applied on the paper actuator, more than 3mm of tip displacement was observed out of the 30 mm long paper beam. This is quite low excitation voltage compared to that of other EAPs. The actuation principle of electro-active paper (EAPap) and possible applications are addressed.

  • PDF

Remote handling systems for the Selective Production of Exotic Species (SPES) facility

  • Giordano Lilli ;Lisa Centofante ;Mattia Manzolaro ;Alberto Monetti ;Roberto Oboe;Alberto Andrighetto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.378-390
    • /
    • 2023
  • The SPES (Selective Production of Exotic Species) facility, currently under development at Legnaro National Laboratories of INFN, aims at the production of intense RIB (Radioactive Ion Beams) employing the Isotope Separation On-Line (ISOL) technique for interdisciplinary research. The radioactive isotopes of interest are produced by the interaction of a multi-foil uranium carbide target with a 40 MeV 200 μA proton beam generated by a cyclotron proton driver. The Target Ion Source (TIS) is the core of the SPES project, here the radioactive nuclei, mainly neutron-rich isotopes, are stopped, extracted, ionized, separated, accelerated and delivered to specific experimental areas. Due to efficiency reasons, the TIS unit needs to be replaced periodically during operation. In this highly radioactive environment, the employment of autonomous systems allows the manipulation, transport, and storage of the TIS unit without the need for human intervention. A dedicated remote handling infrastructure is therefore under development to fulfill the functional and safety requirement of the project. This contribution describes the layout of the SPES target area, where all the remote handling systems operate to grant the smooth operation of the facility avoiding personnel exposure to a high dose rate or contamination issues.

Evaluation of Residual Radioactivity and Dose Rate of a Target Assembly in an IBA Cyclotron (IBA 사이클로트론 표적집합체에서의 잔류 방사화 분석 및 선량률 평가)

  • Hwang, Seon Yong;Kim, Youngju;Lee, Seung Wook
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.643-649
    • /
    • 2016
  • When a cyclotron produces $^{18}F^-$, accelerated protons interact with metal parts of the cyclotron machine and induces radioactivity. Especially, the target window and chamber of the target assembly are the main parts where long-lived radionuclides are generated as they are incident by direct beams. It is of great importance to identify radionuclides induced in the target assembly for the safe operation and maintenance of a cyclotron facility. In this study, we analyzed major radionuclides generated in the target assembly by an operation of the Cyclotron 18/9 machine and measured dose rates after the operation to establish the radiation safety guideline for operators and maintenance personnel of the machine. Gamma spectroscopy with HPGe was performed on samples from the target chamber and Havar foil target window to identify the radionuclides generated during the operation for production of $^{18}F^-$- isotope and their specific activity. Also, the dose rates from the target were measured as a function of time after an operation. These data will help improve radiological safety of operating the cyclotron facilities.

Highly Ordered TiO2 nanotubes on pattered Si substrate for sensor applications

  • Kim, Do-Hong;Shim, Young-Seok;Moon, Hi-Gyu;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jang, Ho-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.66-66
    • /
    • 2011
  • Anodic titanium dioxide (TiO2) nanotubes are very attractive materials for gas sensors due to its large surface to volume ratios. The most widely known method for fabrication of TiO2 nanotubes is anodic oxidation of metallic Ti foil. Since the remaining Ti substrate is a metallic conductor, TiO2 nanotube arrays on Ti are not appropriate for gas sensor applications. Detachment of the TiO2 nanotube arrays from the Ti Substrate or the formation of electrodes onto the TiO2 nanotube arrays have been used to demonstrate gas sensors based on TiO2 nanotubes. But the sensitivity was much lower than those of TiO2 gas sensors based on conventional TiO2 nanoparticle films. In this study, Ti thin films were deposited onto a SiO2/Si substrate by electron beam evaporation. Samples were anodized in ethylene glycol solution and ammonium fluoride (NH4F) with 0.1wt%, 0.2wt%, 0.3wt% and potentials ranging from 30 to 60V respectively. After anodization, the samples were annealed at $600^{\circ}C$ in air for 1 hours, leading to porous TiO2 films with TiO2 nanotubes. With changing temperature and CO concentration, gas sensor performance of the TiO2 nanotube gas sensors were measured, demonstrating the potential advantages of the porous TiO2 films for gas sensor applications. The details on the fabrication and gas sensing performance of TiO2 nanotube sensors will be presented.

  • PDF

Buckling Formation on Steel-Based Solar Cell Induced by Silicone Resin Coat and Its Improvement on Performance Efficiency (실리콘 고분자 수지의 버클링을 통한 스틸기반 태양전지의 효율 향상)

  • Park, Young Jun;Oh, Kyeongseok
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.519-524
    • /
    • 2019
  • Even though stainless steel foil is not a highly efficient material for film-type solar cell, it has strong passivation capability without additional process. In this study, silicone resin was employed during a-Si:H thin film solar cell fabrication for the purpose of planarization and electrical insulation. In the first stage of process, silicone resin was coat onto the stainless steel (STS) using spin coater with thickness of $2{\sim}3{\mu}m$ and followed by aluminum deposition using ion beam application. Unexpectedly buckling was formed during aluminum deposition process. After subsequent fabrication processes, solar cell performance was evaluated. In voltage-current data, slight increase of cell performance was obtained and interpreted by the increase of light scattering.

Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates (단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정)

  • Bong Hyun Seo;Yonas Tsegaye Megra;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.377-382
    • /
    • 2023
  • To enhance the performance of graphene-based devices, it is of great importance to better understand the interfacial interaction of graphene with its underlying substrates. In this study, the adhesion energy of monolayer graphene placed on dielectric substrates was characterized using mode I fracture tests. Large-area monolayer graphene was synthesized on copper foil using chemical vapor deposition (CVD) with methane and hydrogen. The synthesized graphene was placed on target dielectric substrates using polymer-assisted wet transfer technique. The monolayer graphene placed on a substrate was mechanically delaminated from the dielectric substrate by mode I fracture tests using double cantilever beam configuration. The obtained force-displacement curves were analyzed to estimate the adhesion energies, showing 1.13 ± 0.12 J/m2 for silicon dioxide and 2.90 ± 0.08 J/m2 for silicon nitride. This work provides the quantitative measurement of the interfacial interactions of CVD-grown graphene with dielectric substrates.

High Energy Electron Dosimetry by Alanine/ESR Spectroscopy (Alanine/ESR Spectroscopy에 의한 고에너지 전자선의 선량측정)

  • Chu, Sung-Sil
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 1989
  • Dosimerty based on electron spin resonance (ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to 1 Gy. In water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies $(6\~21MeV)$ and therapeutic dose levels (1~60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by$2\~5\%$ than those calculated by nominal energy $C_E$ factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF