• Title/Summary/Keyword: beam foil

검색결과 58건 처리시간 0.023초

A study of the Electron Beam Irradiator for Core-loss reduction of Grain-oriented silicon Steel

  • Kim Min;Yoon Jeong-Phil;Lee Gi-Je;Cha In-Su;Cho Sung-Oh;Lee Byeong-Cheol;Jeong Young-Uk;Yoo Jae-Gwon;Lee Jong-Min
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.93-97
    • /
    • 2001
  • A new compact, low-energy electron beam irradiator has been developed. The core-loss of silicon steels can be reduced by magnetic-domain refinement method. The irradiator was developed for the application of core-loss reduction using the method. The beam energy of the irradiator can be varied from 35 to 80 keV and the maximum current is 3mA. The irradiation area is designed to be $30\times30mm2$ now and will be upgraded to $30\times150mm2$ using a scanning magnet and scanning cone. The electron beam generated from 3 mm diameter LaB6 is extracted to the air for the irradiation of the silicon steels in the air. A special irradiation port was developed for this low-energy irradiator. A havar foil with $4.08{\mu}m$ thickness were used for the window and a cold air-cooling system keeps the foil structure by removing heat at the window. The irradiator system and its operation characteristics will be discussed.

  • PDF

냉음극형 대면적 전자빔의 공간적 분포 특성 (Characteristics of spatial distribution of cold cathode type large aperture electron beam)

  • 우성훈;;조주현;김광훈;이홍식;임근희;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정 (Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing)

  • 이항서;김경석;강기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD) Core and Addition of New Fuel Elements

  • Craft, Aaron E.;Hilton, Bruce A.;Papaioannou, Glen C.
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.200-210
    • /
    • 2016
  • The neutron radiography reactor (NRAD) is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA) reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS) is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM) standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D) = 125 is $5.96{\times}10^6n/cm^2/s$ with a $2{\sigma}$ standard error of $2.90{\times}10^5n/cm^2/s$. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

Measurements of In-phantom Neutron Flux Distribution at the HANARO BNCT Facility

  • Kim Myong Seop;Park Sang Jun;Jun Byung Jin
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.203-209
    • /
    • 2004
  • In-phantom neutron flux distribution is measured at the HANARO BNCT irradiation facility. The measurements are performed with Au foil and wires. The thermal neutron flux and Cd ratio obtained at the HANARO BNCT facility are $1.19{\times}10^9\;n/cm^{2}s$ and 152, respectively, at 24 MW reactor power. The measured in-phantom neutron flux has a maximum value at a depth of 3 mm in the phantom and then decreases rapidly. The maximum flux is about $25\%$ larger than that of the phantom surface, and the measured value at a depth of 22 mm in the phantom is about a half of the maximum value. In addition, the neutron beam is limited well within the aperture of the neutron collimator. The two-dimensional in-phantom neutron flux distribution is determined. Significant neutron irradiation is observed within 20 mm from the phantom surface. The measured neutron flux distribution can be utilized in irradiation planning for a patient.

Enhanced Photocatalytic Activity of TiO2 Modified by e-Beam Irradiation

  • Kim, Moon Su;Jo, Won Jun;Lee, Dowon;Baeck, Sung-Hyeon;Shin, Joong Hyeock;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1397-1400
    • /
    • 2013
  • The influence of electron beam irradiation on photocatalytic activity of $TiO_2$ thin films was investigated. $TiO_2$ thin films were prepared by anodization of Ti foil, and they were then subjected to an 1 MeV electron beam. Changes in physical properties and photocatalytic activity of $TiO_2$ before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states of both titanium and oxygen were determined by X-ray photoelectron spectroscopy (XPS). The density of donor ($N_d$) and flat band potential ($E_{fb}$) were investigated by Mott-Schottky analysis, and photocurrent was measured under a 1kW Xenon lamp illumination. After e-beam irradiation, significant change of Ti oxidation state was observed. $Ti^{3+}/Ti^{4+}$ ratio increased mainly due to the surface reduction by electron, and photocurrent was observed to increase with e-beam irradiation.

In-mold Decoration(IMD) 포일용 경질 코팅 수지 설계 및 전자빔 조사가 IMD 포일 구성층에 미치는 영향 (Design of Hard Coating Resin for In-mold Decoration (IMD) Foil and Effects of EB Irradiation on IMD Foil Layers)

  • 심현석;김건석;신지희;이광희
    • 폴리머
    • /
    • 제36권3호
    • /
    • pp.268-274
    • /
    • 2012
  • 실란 커플링제를 사용하여 알루미나 나노 입자의 표면을 처리하였다. 표면을 개질한 나노 입자를 in-mold decoration(IMD) 포일의 경질 코팅 층에 도입하여 표면 경도 및 내마모성을 중심으로 도막의 물성 변화를 평가하였다. 전자빔(electron beam, EB) 조사가 IMD 포일을 구성하는 color layer 및 anchor layer에 미치는 영향을 색도변화와 cross-cut tape 시험을 통하여 평가하였다. 또한 EB 조사 온도에 따른 경화 거동을 표면 물성 변화 평가 및 Fourier transform infrared(FTIR) spectroscopy 관찰을 통해 정량적으로 분석함으로써 EB 경화 공정의 실용화에 필요한 데이터베이스를 구축하였다.

Application of Laser Beam Deflection Technique to Analysis of Stresses Generated during Hydrogen Diffusion through Pd Foil Electrode

  • Han Jeong-Nam;Pyun Su-Il
    • 전기화학회지
    • /
    • 제4권2호
    • /
    • pp.70-76
    • /
    • 2001
  • 본 연구는 Pd박막 전극에서 수소 확산시 발생되는 응력해석에 대한 레이저 빔 디플렉션 방법의 응용에 대해 기술하였다. 우선, 탄성에 의한 확산 (고스키 효과) 및 확산에 의한 탄성 현상에 대해 간략히 설명하였고, 주어진 초기 및 경계 조건하에서 Fick 방정식의 해와 Vegard 및 Hooke의 법칙으로부터 확산에 의한 탄성 현상의 모델을 이론적으로 유도하였다. 다음으로 레이저 빔 디플렉션 방법이 수소 확산으로 인해 발생되는 응력해석에 어떻게 사용될 수 있는지 실험 장치 및 시편에 대해 소개하였다 마지막으로, 수학적으로 계산된 디플렉션 시간 추이 곡선과 실험적으로 얻어진 곡선의 비교로부터, 시간에 따른 인장 디플렉션의 변화를 시간에 따른 전극 내부의 수소 농도 구배의 변화 및 수소 확산계수의 차이로 설명하였다.

전자회절도형의 원리와 분석 : Microcomputer의 이용 (Principles and Analysis of Electron Diffraction Patterns in Transmission Electron Microscopy : Utilization of Microcomputers)

  • 성창모
    • Applied Microscopy
    • /
    • 제21권1호
    • /
    • pp.108-120
    • /
    • 1991
  • Principles of electron diffraction patterns in transmission electron microscope are described for beginners in terms of reciprocal lattices and Ewald sphere. Analysis of both ring patterns and spot patterns are illustrated with practical examples as well as basic calibrations of TEM. Especially convergent beam electron diffraction method is emphasized for the determination of lattice parameters, microstrains, and thickness of thin foil followed by a review of microcomputer programs for the electron diffraction analyses explained in this paper.

  • PDF

SEM을 이용한 미세 접합 시스템 개발 (A Development of SEM Applied Microjoining System)

  • 황일한;나석주
    • Journal of Welding and Joining
    • /
    • 제21권4호
    • /
    • pp.63-68
    • /
    • 2003
  • Scanning electron microscopy (SEM) has been used as a surface measurement instrument and a tool for lithography in semiconductor process due to its high density localized beam. For those purposes, however, the maximum current of SEM Is less than 100pA, which is not enough fo material processing. In this paper SEM was modified to increase the amount of current reaching a specimen from gun part where current is generated, the possibility of applying SEM to material processing, especially microjoining, was investigated. The maximum current of SEM after modifications was measured up to 10$\mu$A, which is about 10$^{5}$ times greater than before modifications. Through experiments such as eutectic solder wetting on thin 304 stainless steel foil and microjoining of 10$\mu$m thick 304 stainless steel, the intensity of electron beam of SEM proved to be great enough fur material processing as heat source. And a tight jig system was found necessary to hold materials close enough fur successful microloining.