• 제목/요약/키워드: beam columns

Search Result 510, Processing Time 0.026 seconds

Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns (기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구)

  • 장원석;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

The Maximum Strength of Stainless Steel Rectangular Hollow Section Columns and Beam-Columns (스테인리스 각형강관기둥의 최대내력)

  • Lee, Myung Jae;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.73-82
    • /
    • 2005
  • The objective of this study is to investigate the maximum strength of stainless steel rectangular hollow section columns and beam-columns by using numerical analysis. Stress-strain relationships are modeled based on coupon tests results, and their influences on the maximum strength of columns and beam-columns are discussed. The analysis results are compared with the formula for the limit state design code of steel structures. It is ascertained that the design code for the stainless steel is needed to use stainless steel for the members of architectural structures.

Free Vibration Analysis of Parabolic Hollowed Beam-columns with Constant Volume (일정체적을 갖는 포물선형 중공 보-기둥의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2011
  • This paper deals with free vibrations of the parabolic hollowed beam-columns with constant volume. The cross sections of beam-column taper are the hollowed regular polygons whose depths are varied with the parabolic functional fashion. Volumes of the objective beam-columns are always held constant regardless given geometrical conditions. Ordinary differential equation governing free vibrations of such beam-columns are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam-column parameters such as end constraints, side number, section ratio, thickness ratio and axial load are reported in tables and figures.

Free Vibration of Beam-Columns on Non-Homogeneous Foundation (비균질 탄성지반 위에 놓인 보-기둥의 자유진동)

  • 이병구;오상진;이태은
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.206-211
    • /
    • 1999
  • The purpose of this study is to investigate the natural frequencies and mode shapes of beam-columns on the non-homogeneous foundaion. The beam model is based on the classical Bernoulli-Euler beam theory. The linear foundation modulus is chosen as the non-homogeneous foundation in this study . The differentidal equation goeverning free vibrations of such beam-columns subjected to axial load is derived and solved numerically for calculting the natural frquencies and mode shapes. In numerical fivekinds of end constraint are considered, and the lowest four natural frquencies and corresponding mode shape are obtained as the non-dimensional forms.

  • PDF

Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns

  • Patel, Vipulkumar Ishavarbhai;Liang, Qing Quan;Hadi, Muhammad N.S.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.91-104
    • /
    • 2012
  • There is relatively little numerical study on the behavior of eccentrically loaded high strength rectangular concrete-filled steel tubular (CFST) slender beam-columns with large depth-to-thickness ratios, which may undergo local and global buckling. This paper presents a multiscale numerical model for simulating the interaction local and global buckling behavior of high strength thin-walled rectangular CFST slender beam-columns under eccentric loading. The effects of progressive local buckling are taken into account in the mesoscale model based on fiber element formulations. Computational algorithms based on the M$\ddot{u}$ller's method are developed to obtain complete load-deflection responses of CFST slender beam-columns at the macroscale level. Performance indices are proposed to quantify the performance of CFST slender beam-columns. The accuracy of the multiscale numerical model is examined by comparisons of computer solutions with existing experimental results. The numerical model is utilized to investigate the effects of concrete compressive strength, depth-to-thickness ratio, loading eccentricity ratio and column slenderness ratio on the performance indices. The multiscale numerical model is shown to be accurate and efficient for predicting the interaction buckling behavior of high strength thin-walled CFST slender beam-columns.

Ultimate section capacity of steel thin-walled I-section beam-columns

  • Salem, Adel Helmy;Sayed-Ahmed, Ezzeldin Yazeed;El-Serwi, Ahmed Abdelsalam;Korashy, Mohamed Mostafa
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.367-384
    • /
    • 2004
  • A numerical model based on the finite element technique is adopted to investigate the behavior and strength of thin-walled I-section beam-columns. The model considers both the material and geometric nonlinearities. The model results were first verified against some of the currently available experimental results. A parametric study was then performed using the numerical model and interaction diagrams for the investigated beam-columns have been presented. The effects of the web depth-to-thickness ratio, flange outstand-to-thickness ratio and bending moment-to-normal force ratio on the ultimate strength of thin-walled I-section beam-columns were scrutinized. The interaction equations adopted for beam columns design by the NAS (North American Specifications for the design of cold formed steel structural members) have been critically reviewed. An equation for the buckling coefficient which considers the interaction between local buckling of the flange and the web of a thin-walled I-section beam-column has been proposed.

Fundamental behavior of CFT beam-columns under fire loading

  • Varma, Amit H.;Hong, Sangdo;Choe, Lisa
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.679-703
    • /
    • 2013
  • This paper presents experimental investigations of the fundamental behavior of concrete filled steel tube (CFT) beam-columns under fire loading. A total of thirteen specimens were tested to determine the axial force-moment-curvature-temperature behavior of CFT beam-columns. The experimental approach involved the use of: (a) innovative heating and control equipment to apply thermal loading and (b) digital image correlation with close-range photogrammetry to measure the deformations (e.g., curvature) of the heated region. Each specimen was sequentially subjected to: (i) constant axial loading; (ii) thermal loading in the expected plastic hinge region following the ASTM E119 temperature-time T-t curve; and (iii) monotonically increasing flexural loading. The effects of various parameters on the strength and stiffness of CFT beam-columns were evaluated. The parameters considered were the steel tube width, width-tothickness ratio, concrete strength, maximum surface temperature of the steel tube, and the axial load level on the composite CFT section. The experimental results provide knowledge of the fundamental behavior of composite CFT beam-columns, and can be used to calibrate analytical models or macro finite element models developed for predicting behavior of CFT members and frames under fire loading.

Inelastic Buckling Behavior of Column and Beam-Column (기둥과 보-기둥 구조물의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.215-224
    • /
    • 2004
  • The inelastic lateral-torsional buckling behavior of the beam-columns and the columns was investigated in this paper. The energy method was deployed to study the inelastic buckling behavior of the beam-columns and columns. which requires the iterative solution of a fourth-order eigenproblem. Hitherto, the patterns of residual stress that satisfies the I-section manufacturing in Korea is not available, therefore the pattern of residual stress used in this study is a 'well-known' simplified pattern. The simplified pattern of the residual stresses is incorporated with the flow theory of plasticity to model the inelastic response. Firstly, this study investigates the inelastic lateral-torsional buckling behavior of the I-section beam-columns under a concentric axial compressive force and uniform bending, and the effect of residual stress on the inelastic buckling behavior of beam-columns is studied. The study is then extended to the inelastic buckling of the columns by eliminating a bending moment. These results are compared it with the design method in the Korean Steel Designers Manual (KSDM 1995). This study has found that design method in KSDM (1995) is excessively conservative.

Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations (다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중)

  • 이성희;김형열;박기태;박대효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.523-534
    • /
    • 2002
  • Free vibration and buckling analysis of multi-delaminated composite beam-columns subjected to axial compressive load is performed in the present study In order to investigate the effects of multi-delaminations on the natural frequency and the elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-dclamination tip. The characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delauunated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and the elastic buck)ing load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.