• Title/Summary/Keyword: beach nourishment

Search Result 31, Processing Time 0.027 seconds

Characteristic Analysys of Songdo Beach, Busan, Shoreline Changes (부산 송도해수욕장의 해안선변화 특성 분석)

  • Kim, Myoung-Kyu;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In this study, an investigation of the shoreline changes at Song-do beach in Busan was carried out for a coastal improvement project to prevent damage from coastal disasters. From the results of the observed data, it is seen that the shoreline moves seaward under extreme wave conditions and moves leeward under normal wave conditions. The reason for this is wave run-up when wave conditions are extreme in summer. In addition, nourishment sand is moved seaward by wave run-up. Thus, the shoreline's slope is gently decreased. Therefore, the shoreline is moved seaward.

Beach Nourishment Projects as "Experiments of Opportunity" (기회 실험으로써의 양빈계획)

  • Robert G. Dean;Yoo, Chul-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.127-138
    • /
    • 1994
  • 미국 Florida주 North Redington 해변의 양빈계획(Beach Nourishment Project)을 정기적으로 측정함으로써 종방향토사이동과정(Longshore Sediment Transport Process)을 조사하였다. 본 계획은 약 2.6km 해변에 약 405,000$m^3$의 모래로 이루어졌으며 2년에 걸쳐 26개의 profile을 계측하였고 파고, 파향 그리고 시료 채취를 포함하고 있다. 본 연구는 측정된 자료를 분석함으로써 최적의 토사이동계수와 그에 상응하는 상대오차를 구하는데 주된 목적이 있다. 적용된 토사이동공식은 1) Komar-Inman공식, 2) Dean 공식(Radiation Stress, $S_{xy}$의 변형식), 3) Kamphuis 공식 등이다. 상기 3가지 공식은 대동소이 ($\pm$4%)의 결과를 나타내어 어느 공식이 더 적합한지 우열을 가늠하기 어려웠다. 횡방향토사이동량을 고려한 상세모델과 고려하지 않은 단순모델의 두 가지 형태로 적용되었으며 일반설계를 위한 Model(단순모델)은 실측치보다 다소 큰 값을 보여준다.

  • PDF

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

Experimental Study on Effectiveness of Wave Reduction and Prevention Erosion of Nourishment Sand Using the Cell Group (Cell Group을 이용한 파랑저감 및 양빈사 유실방지에 관한 실험적 연구)

  • Park, Sang Kil;Park, Hong Bum;Kim, Young Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, a submerged breakwater has been installing to prevent the erosion of shoreline everywhere. Artificially submerged breakwater is made to minimize the loss of nourishment sand beach erosion. For this reason, it has been indiscriminately constructed submerged breakwater that is planned in the country throughout. However, maintenance purposes to keep the shoreline of the beach is a method that is quite a few problems. There are also disadvantages such as expensive construction costs, ocean space utilization, water pollution and shoreline modification. In addition, person of utilizing the space of the ocean leisure does not like that because of the disconnection of ocean space. The beaches such as Gwanganri are artificially supplying nourishment sand to maintain the beach. The flexible construction method refers to a structure that is installed as a flexible material instead of submerged breakwater to prevent the loss of nourishment sand. In order to develop a new method to mitigate shoreline erosion, this study was carried out a hydraulic model experiment by installing a cell group as an example of the flexible method. Namely, in order to prevent the loss of nourishment sand, we decided to develop a new method that can mitigate the degree of beaches erosion by using cell group instead of submerged breakwater. In the two dimensional fixed hydraulic experiment, was carried out the effect reducing of wave height and the rate of low reflection due to the installation of the cell group. In movable bed experiment, the capture rate of the nourishment sand and the erosion prevention rate of the nourishment sand was performed for stability of shoreline. Therefore, according to the results of the hydraulic tests, it was possible to maintain the stable beaches due to installing the cell group on the erosion beaches, due to the effect of reducing wave height, the low reflection, the erosion prevention rate of nourishment sand, the high capture rate of nourishment sand.

Shoreline Change Before and After Breakwater Extension at the Gungchon Port, Geundeok-myeon, Samcheok-si, Gangwon-do (강원도 삼척시 근덕면 궁촌항 방파제 확장 전, 후의 해안선 변화)

  • Kim, Young-Jae;Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • This study tries to reveal influence of artificial structure construction on shoreline change using DSAS 4.3. Before breakwater extension at the Gungchon Port, beaches at the study area were dominated by long-term erosion and especially, severe shoreline retreat was prevailed at the Wonpyeong Beach that is opened to offshore. During 2 years after the extension leading formation of shadow zone, the Gungchon Beach was rapidly developed due to sand supply to the shadow zone and then stabilized. The shadow zone only affected the northern part of the Wonpyeong Beach, while beaches from the southern part of the Wonpyeong Beach to the Munam Beach was little affected. Beach nourishment and groin construction led beach development at the northern part of the Wonpyeong Beach, while beach erosion from the southern part of the Wonypeong Beach to the Munam Beach was caused by the groin. This study suggests that sufficient consideration before coastal structure construction should be made regardless of purposes.

Analysis for Generation of Rip Current before and afterBeach Nourishment at Haeundae Beach (해운대 해수욕장 양빈 전후의 이안류 발생 변화 분석)

  • Kim, Dong Hee;Lee, Jung Lyul
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.246-249
    • /
    • 2015
  • 본 연구에서는 해운대 해수욕장 연안정비사업 전후의 지형변화에 따른 이안류 발생 변화에 대해 분석하였다. 본 연구에서는 Matlab GUI (Graphical User Interface)로 개발한 HAECUM (HAE(海) Current Model)을 통하여 해운대 해수욕장의 해빈류를 모의 하였다. 분석에 사용된 데이터는 이상적인 경우와 실제 이안류가 발생한 상황에 대해 각각 적용하였으며, 상호비교의 효율성을 위하여 해빈류 장미도를 통해 비교 분석 하였다. 본 연구를 통해 해운대 해수욕장의 연안정비사업에 따른 해빈류 및 이안류에 대한 상관성 도출하였다.

  • PDF

Characteristics of Erosion Variation at Haeundae Beach due to Multiple Typhoons (복수의 태풍내습에 의한 해운대 해수욕장 침식변화특성)

  • Kang, Tae-Soon;Lee, Jong-Sup;Kim, Jong-Beom;Kim, Jong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.920-926
    • /
    • 2019
  • In this study, we analyzed the erosion variation of beach area at Haeundae Beach after coastal improvement project using video monitoring system operated by the Coastal Erosion Monitoring (Ministry of Oceans and Fisheries). Haeundae Beach was well maintained and stabilized following large scale nourishment through coastal improvement project despite of seasonal fluctuations. However, multiple typhoons over the last two years caused beach stabilization patterns and seasonal fluctuations to lost equilibrium, resulting in rapid erosion. In particular, the sandy beach was eroded by typhoon Solic and Kongray in 2018 and failed to recover beach area in winter by seasonal fluctuations. And due to multiple typhoons in 2019, the beach area was reduced 9.5 % (12,607 ㎡) year-on-year. According to analyze the observed wave and beach area data in Haeundae, the tendency of erosion and sedimentation was influenced by seasonal incident wave direction for each section(west, center and east part). Therefore, to identify the causes of decreasing seasonal fluctuation characteristics and continuous erosion, hereafter, more precise monitoring of different factors are needed, such as the crest heights of submerged breakwater and its loss of function, and sand leakage to the outside around submerged breakwater.

Evaluation of the new coastal protection scheme at Mamaia Bay in the nearshore of the Black Sea

  • Niculescu, Dragos M.;Rusu, Eugen V.C.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • The target area of the proposed study, Mamaia beach, is a narrow stretch of sand barrier island that sits between the Siutghiol Lake and the Black Sea. In the northern part of the bay, is located the Midia Port, where between 1966 and 1971 a long extension of 5 km of the offshore was built. Because of this extension, the natural flow of sediments has been significantly changed. Thus, the southern part of the Mamaia Bay had less sand nourishment which meant that the coast was eroding and to prevent it a protection of six dikes was built. After approximately forty years of coastal erosion, the south of the Mamaia Bay had in 2016 a new protection scheme, which includes first of all the beach nourishment and a new dike structure (groins scheme for protection) to protect it. From this perspective, the objective of the proposed study is to evaluate the effectiveness of the old Master plan against the new one by modeling the outcome of the two scenarios and to perform a comparison with a third one, in which the protection dikes do not exist and only the artificial nourishment has been done. In order to assess the wave processes and the current patterns along the shoreline, a complex computational framework has been applied in the target area. This joins the SWAN spectral phase averaged model with the 1D surf model. Furthermore, new UAV technology was also used to map out, chart and validate the numerical model outputs within the target zone for a better evaluation of the trends expected in the shoreline dynamics.

The Coastline Change on Gwangalli Using Spatial Information (공간정보를 이용한 광안리 해안선 변화에 관한 연구)

  • Choi, Chul-Uong;Oh, Che-Young;Lee, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The Gwangalli Beach, one of beaches representative of Busan together with the Haeundae Beach, is a tourist attraction, having increased tourists since the completion of Gwangandaero Bridge in 2003 and recording more than 10 million tourists in 2006. Although the competent local government office has conducted artificial beach nourishment/gravel removal projects every year to manage it, systematic monitoring and studies of erosion are insufficient. This study analyzed the changes in the coastline of Gwangalli Beach using aerial photos, tidal data, GPS survey data for the last sixty years, and examined how the Gwangandaero Bridge, which had been constructed on the Gwanganlli sea, has affected the changes. The results show that the area of Gwangalli Beach has increased 40% for the last sixty years, and that the effects of Gwangandaero Bridge on the coastline are insignificant.

  • PDF