• Title/Summary/Keyword: bayesian predictive model

Search Result 80, Processing Time 0.024 seconds

Temporal Trends and Future Prediction of Breast Cancer Incidence Across Age Groups in Trivandrum, South India

  • Mathew, Aleyamma;George, Preethi Sara;Arjunan, Asha;Augustine, Paul;Kalavathy, MC;Padmakumari, G;Mathew, Beela Sarah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2895-2899
    • /
    • 2016
  • Background: Increasing breast cancer (BC) incidence rates have been reported from India; causal factors for this increased incidence are not understood and diagnosis is mostly in advanced stages. Trivandrum exhibits the highest BC incidence rates in India. This study aimed to estimate trends in incidence by age from 2005-2014, to predict rates through 2020 and to assess the stage at diagnosis of BC in Trivandrum. Materials and Methods: BC cases were obtained from the Population Based Cancer Registry, Trivandrum. Distribution of stage at diagnosis and incidence rates of BC [Age-specific (ASpR), crude (CR) and age-standardized (ASR)] are described and employed with a joinpoint regression model to estimate average annual percent changes (AAPC) and a Bayesian model to estimate predictive rates. Results: BC accounts for 31% (2681/8737) of all female cancers in Trivandrum. Thirty-five percent (944/2681) are <50 years of age and only 9% present with stage I disease. Average age increased from 53 to 56.4 years (p=0.0001), CR (per $10^5$ women) increased from 39 (ASR: 35.2) to 55.4 (ASR: 43.4), AAPC for CR was 5.0 (p=0.001) and ASR was 3.1 (p=0.001). Rates increased from 50 years. Predicted ASpR is 174 in 50-59 years, 231 in > 60 years and overall CR is 80 (ASR: 57) for 2019-20. Conclusions: BC, mostly diagnosed in advanced stages, is rising rapidly in South India with large increases likely in the future; particularly among post-menopausal women. This increase might be due to aging and/or changes in lifestyle factors. Reasons for the increased incidence and late stage diagnosis need to be studied.

A generalized explainable approach to predict the hardened properties of self-compacting geopolymer concrete using machine learning techniques

  • Endow Ayar Mazumder;Sanjog Chhetri Sapkota;Sourav Das;Prasenjit Saha;Pijush Samui
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.279-296
    • /
    • 2024
  • In this study, ensemble machine learning (ML) models are employed to estimate the hardened properties of Self-Compacting Geopolymer Concrete (SCGC). The input variables affecting model development include the content of the SCGC such as the binder material, the age of the specimen, and the ratio of alkaline solution. On the other hand, the output parameters examined includes compressive strength, flexural strength, and split tensile strength. The ensemble machine learning models are trained and validated using a database comprising 396 records compiled from 132 unique mix trials performed in the laboratory. Diverse machine learning techniques, notably K-nearest neighbours (KNN), Random Forest, and Extreme Gradient Boosting (XGBoost), have been employed to construct the models coupled with Bayesian optimisation (BO) for the purpose of hyperparameter tuning. Furthermore, the application of nested cross-validation has been employed in order to mitigate the risk of overfitting. The findings of this study reveal that the BO-XGBoost hybrid model confirms better predictive accuracy in comparison to other models. The R2 values for compressive strength, flexural strength, and split tensile strength are 0.9974, 0.9978, and 0.9937, respectively. Additionally, the BO-XGBoost hybrid model exhibits the lowest RMSE values of 0.8712, 0.0773, and 0.0799 for compressive strength, flexural strength, and split tensile strength, respectively. Furthermore, a SHAP dependency analysis was conducted to ascertain the significance of each parameter. It is observed from this study that GGBS, Flyash, and the age of specimens exhibit a substantial level of influence when predicting the strengths of geopolymers.

Comparison of Two Commercial Antibody Enzyme-Linked Immunosorbent Assays for Detection of Porcine Reproductive Respiratory Syndrome Virus Infection (돼지생식기호흡기증후군(PRRS) 바이러스 감염 항체 검출 ELISA 상용 키트의 정확도 비교)

  • Pak, Son-Il;Lee, Seung-Hwan;Park, Kyung-Ae
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.102-106
    • /
    • 2016
  • More than 20 years after the first report of porcine reproductive and respiratory syndrome virus (PRRSV) in Korea, the disease is still having major impact on domestic pig health and relevant industries. Although ELISA tests are commonly used by veterinarians to guide herd management, data on diagnostic performance of the test in field settings are very limited. The objective of this study was to evaluate two commercially available PRRSV ELISA (IDEXX PRRS X3 ELISA and Bionote PRRSV ELISA 4.0) to detect antibodies against PRRSV on serum samples. To this end, a total of 1,108 sera were recruited from 35 swine farms located in Gyeonggi province and tested at the Gyeonggi Province Veterinary Service Center. All tests were performed according to the manufacturer's instructions, by laboratory technicians who routinely perform PRRS testing on blood samples. Samples were collected from two sources of swine populations with different PRRS prevalence; 60 samples (5.4%) were originated from breeding farms and the remaining 1,048 samples (94.6%) were from farrow-to-finish farms. We applied Bayesian latent class model (LCM) for two-tests in the two-population when the accuracy of the gold standard is not available. The model estimated that Bionote ELISA was a bit more specific but slightly less sensitive. The estimated sensitivity and specificity of the IDEXX ELISA were 99.8% (95% CI 98.1-100%) and 86.4% (95% CI 81.4-96.5%), respectively. Sensitivity, specificity, positive predictive value and negative predictive value for Bionote kit were 98.7% (95% CI 92.8-100%), 89.8% (95% CI 86.2-93.1%), 93.8% (95% CI 91.5-96.0%), and 97.8% (95% CI 87.1-100%), respectively. Based on the Bayesian 95% credible intervals, the sensitivity and specificity of the two ELISAs were not significantly different each other when assuming that two kits were imperfect, indicating that two kits performed equally well in terms of sensitivity and specificity in our filed setting.

Learning Predictive Model of Memory Landmarks based on Bayesian Network Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee Byung-Gil;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.550-552
    • /
    • 2005
  • 유비쿼터스 환경의 발달과 함께 모바일 장비에서 수집되어지는 컨텍스트 로그를 활용한 연구가 활발히 진행되고 있다. 하지만 기존의 컨텍스트 정보를 사용한 연구는 사용자 모델링에 그 초점을 맞추거나 단순하게 수집된 정보를 정리하여 한눈에 알아보기 쉽게 보여주는 정도에 그치고 있다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위한 방법으로서 모바일 컨텍스트 로그와 외부 센서를 통해 정보를 수집하여 학습한 베이지안 네트워크를 이용하여 랜드마크를 찾아내는 예측 모델을 제안한다. 베이지안 네트워크 설계는 사전에 수집된 컨텍스트 정보를 요일과 주별로 분류하여 각각에 대한 베이지안 네트워크를 cross validation하여 랜드마크 예측에 대한 정확도를 평가하였다. 그리고 분류에서 가장 많이 사용하고 있는 SVM 방법을 사용하여 제안한 방법과의 성능을 비교평가하였다. 랜드마크 예측에 대한 정확도는 주간별로 설계한 베이지안 네트워크보다 요일별로 설계한 베이지안 네트워크가 랜드마크를 예측하는데 정화도가 높음을 확인하였고, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다. 예측에 한 정확성이 우수하였다.

  • PDF

Predicting the Tritium Release Accident in a Nuclear Fusion Plant (원자핵 융합 발전소의 삼중수소 유출 사고 예측)

  • 양희중
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.201-212
    • /
    • 1998
  • A methodology of the safety analysis on the fusion power plant is introduced. It starts with the understanding of the physics and engineering of the plant followed by the assessment of the tritium inventory and flow rate. We a, pp.y the probabilistic risk assessment. An event tree that explains the propagation of the accident is constructed and then it is translated in to an influence diagram, that is accident is constructed and then it is translated in to an influence diagram, that is statistically equivalent so far as the parameter updating is concerned. We follow the Bayesian a, pp.oach where model parameters are treated as random variables. We briefly discuss the parameter updating scheme, and finally develop the methodology to obtain the predictive distribution of time to next severe accident.

  • PDF

Carbonation depth prediction of concrete bridges based on long short-term memory

  • Youn Sang Cho;Man Sung Kang;Hyun Jun Jung;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.325-332
    • /
    • 2024
  • This study proposes a novel long short-term memory (LSTM)-based approach for predicting carbonation depth, with the aim of enhancing the durability evaluation of concrete structures. Conventional carbonation depth prediction relies on statistical methodologies using carbonation influencing factors and in-situ carbonation depth data. However, applying in-situ data for predictive modeling faces challenges due to the lack of time-series data. To address this limitation, an LSTM-based carbonation depth prediction technique is proposed. First, training data are generated through random sampling from the distribution of carbonation velocity coefficients, which are calculated from in-situ carbonation depth data. Subsequently, a Bayesian theorem is applied to tailor the training data for each target bridge, which are depending on surrounding environmental conditions. Ultimately, the LSTM model predicts the time-dependent carbonation depth data for the target bridge. To examine the feasibility of this technique, a carbonation depth dataset from 3,960 in-situ bridges was used for training, and untrained time-series data from the Miho River bridge in the Republic of Korea were used for experimental validation. The results of the experimental validation demonstrate a significant reduction in prediction error from 8.19% to 1.75% compared with the conventional statistical method. Furthermore, the LSTM prediction result can be enhanced by sequentially updating the LSTM model using actual time-series measurement data.

A Study of Short-term Won/Doller Exchange rate Prediction Model using Hidden Markov Model (은닉마아코프모델을 이용한 단기 원/달러 환율예측 모형 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.229-235
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

A Study of Exchange rate Prediction Model using Model-based (모델기반 방법론을 이용한 환율예측 모형 연구)

  • Jeon, Jin-Ho;Moon, Seok-Hwan;Lee, Chae-Rin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.547-549
    • /
    • 2012
  • Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

  • PDF

Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits

  • Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.622-630
    • /
    • 2024
  • Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.