• Title/Summary/Keyword: battery modeling

Search Result 232, Processing Time 0.031 seconds

Development of Low Cost, High-Performance Miniaturized Lithium-ion Battery Tester Using Raspberry Pi Zero

  • La, Phuong-Ha;Im, Hwi-Yeol;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.47-48
    • /
    • 2017
  • This paper presents a low-cost portable lithium battery parameter measuring and estimating the solution. In this method, lithium battery characteristics are monitored during discharging and charging cycles. The battery profile is analyzed, and its key parameters are estimated by GNU Octave running on Raspberry Pi Zero, a mini computer. The proposed method can measure and estimate the battery parameters for SOC and DOD estimation with reasonable accuracy as well as portability features.

  • PDF

A SOC Estimation using Kalman Filter for Lithium-Polymer Battery (칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정)

  • Jang, Ki-Wook;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

A Study on the Basic Model for Simulating Performance of Thermal-Batteries (열전지 성능 시뮬레이션을 위한 기초 모델에 대한 연구)

  • Ji, Hyun-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.102-111
    • /
    • 2008
  • This paper describes the basic model and simulation results of thermal battery. Voltage and thermal analysis is a critical part of thermal-battery design because of the need to maintain the inner temperature above the electrolyte melting point. Traditionally, battery design has depended on an empirical approach, in which prototype batteries are outfitted with thermocouples and the design of subsequent batteries is refined accordingly. We have developed the basic model that allows the design engineer to configure or modify a battery, quickly conduct a thermal analysis, and efficiently review the results. Based on performance tests, the thermal-battery model was established and the effect of design parameters on battery performance was analyzed.

Battery Response Characteristics According to System Modeling and Driving Environment of Electric Vehicles (전기자동차 시스템 모델링 및 주행 환경에 따른 배터리 응답 특성 연구)

  • Chu, Yong-Ju;Park, Jun-Young;Park, Gwang-Min;Lee, Seung-Yop
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • Currently, various researches on electric vehicle battery systems have been conducted from the viewpoint of safety and performance for SoC, SoH, etc. However, it is difficult to build a precise electrical model of a battery system based on the chemical reaction and SoC prediction. Experimental measurements and predictions of the battery SoC were usually performed using dynamometers. In this paper, we construct a simulation model of an electric vehicle system using Matlab Simulink, and confirm the response characteristics based on the vehicle test driving profiles. In addition, we show that it is possible to derive the correlation between the SoC, voltage, and current of the battery according to the driving time of the electric vehicle in conjunction with the BMS model.

Inner Temperature Distribution by Two Appearances of Series-Cell Configured Battery Pack using Cylindrical Cells (원통형셀 기반 직렬배터리팩의 외형(정사/직사면체) 차이에 의한 내부 열분포 기초해석)

  • Han, Dong-Ho;Lee, Pyeng-Yeon;Park, Jin-Hyeng;Kim, Jonghoon;Yoo, Kisoo;Cho, In-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • Given that lithium-ion batteries are expected to be used as power sources for electric and hybrid vehicles, thermodynamics experimentation and prediction based on experimental data were performed. Thermal, electrochemical, and electrochemical/electrical-thermal models were used for accurate battery modeling. Various applications of different battery packs were demonstrated, and thermal analysis was performed using the same experimental conditions for square and rectangular battery packs. Accurate thermal analysis for a single cell should be prioritized to determine the thermal behavior of the battery pack. The energy balance equation, which contains heat generation and heat transfer factors, defines the thermal behavior of the battery pack. By comparing battery packs of different shapes tested under the same condition, this study revealed that the rectangular battery pack is superior to the square battery pack in terms of the maximum temperature of inner cells and temperature variation between cells.

High-Frequency Analysis Modeling of Hybrid Vehicle Battery (하이브리드 자동차 배터리의 고주파 해석 모델링)

  • Lee, Jae-Joong;Lee, June-Sang;Kim, Mi-Ro;Kweon, Hyck-Su;Nah, Wan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.263-269
    • /
    • 2012
  • In order to present that the electromagnetic compatibility standards following the frequency goes up which is based automotive electronics, in this paper, a hybrid/electric vehicle battery which reflects the frequency of the equivalent circuit model is introduced. By using this circuit modeling, the impedance characteristics can be analysed and an analyze of battery one cell is finished. Using this model, each different from the discharging situation, the discharge characteristic curve could be led. Basic theoretical approaches and measuring results through MATLAB and experimental validation of the EIS measurement equipment was used.

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Modeling & Operating Algorithm of Islanding Microgrid with Wind Turbine, Diesel Generator and BESS (풍력-디젤-BESS 독립형 마이크로그리드 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5893-5898
    • /
    • 2014
  • This paper proposes a modeling method and operating algorithm of an islanding microgrid that is composed of a Battery Energy Storage System (BESS), wind turbine and diesel generator applied in island areas. Initially, the bilateral AC/DC converter was designed for charge/discharge for frequency and voltage to be maintained within the proper ranges according to the load and weather change, and the operating method was proposed for a diesel generator to operate when power supply from the wind turbine or BESS is insufficient. The proposed modeling and controller design method of BESS was applied to a typical islanded microgrid with a wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.