• Title/Summary/Keyword: bathymetry

Search Result 209, Processing Time 0.021 seconds

Correction Algorithm of Errors by Seagrasses in Coastal Bathymetry Surveying Using Drone and HD Camera (드론과 HD 카메라를 이용한 수심측량시 잘피에 의한 오차제거 알고리즘)

  • Kim, Gyeongyeop;Choi, Gunhwan;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.553-560
    • /
    • 2020
  • This paper presents an algorithm for identifying and eliminating errors by seagrasses in coastal bathymetry surveying using drone and HD camera. Survey errors due to seagrasses were identified, segmentated and eliminated using a L∗a∗b color space model. Bathymetry survey using a drone and HD camera has many advantages over conventional survey methods such as ship-board acoustic sounder or manual level survey which are time consuming and expensive. However, errors caused by sea bed reflectance due to seagrasses habitat hamper the development of new surveying tool. Seagrasses are the flowering plants which start to grow in November and flourish to maximum density until April in Korea. We developed a new algorithm for identifying seagrasses habitat locations and eliminating errors due to seagrasses to get the accurate depth survey data. We tested our algorithm at Wolpo beach. Bathymetry survey data which were obtained using a drone with HD camera and calibrated to eliminate errors due to seagrasses, were compared with depth survey data obtained using ship-board multi-beam acoustic sounder. The abnormal bathymetry data which are defined as the excess of 1.5 times of a standard deviation of random errors, are composed of 8.6% of the test site of area of 200 m by 300 m. By applying the developed algorithm, 92% of abnnormal bathymetry data were successfully eliminated and 33% of RMS errors were reduced.

A Display System of Realtime 3D Bathymetry Using Remote Sensing Exploration and Cloud Computing Technologies (원격탐사와 클라우드 컴퓨팅 기술을 활용한 실시간 3D 해저지형의 디스플레이 시스템)

  • Lee, Jong-Hoon;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • Recently. utilization of remote sensing exploration and cloud computing has been extended to efficient measurement, store, and update of bathymetry map data according to cloud computing technology. In the field of real ocean, water depth measurements and measurement data management, distribution, and display equipment for the development and dissemination have generated a lot of time and cost. To improve these problems, through real-time three-dimensional display system at this location, we can determine the importance of measurement activities, and reduce the time and cost of measurement activities. Data measured from marine probe vessels and remote sensing exploration equipments and other various channels can be handled and managed. In this paper, we propose a realtime three-dimensional display system through the depth measurements from remote sensing exploration. The proposed real-time three-dimensional display system can be effectively applied in the field of measurement of the topographical survey of the land as well as bathymetry of the sea.

Topographic Analysis Using Wavelet-Based Digital Filters in the KR5 area, NE Equatorial Pacific (웨이브렛 디지털 필터를 이용한 북동태평양 KR5 지역의 지형 분석방법)

  • Jung, Mee-Sook;Lee, Tae-Gook;Kim, Hyun-Sub;Ko, Young-Tak;Park, Cheong-Kee;Kim, Ki-Hyune
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.311-320
    • /
    • 2006
  • Digital filters designed using wavelet theory are applied to bathymetry data acquired from KR5 area of Korea Deepsea Mining Area. The filters used in this study are the linear B-spline wavelet filter and derivative of a Cubic B-spline filter. With proper tuning of the digital filters, we can identify the location and orientation of the abyssal hill and abyssal trough in bathymetry. These features obtained from the digital filters are well correlated with bathymetric image. This quantitative information, which can be used to understand the underlying geophysical processes, can be further processed to obtain the spacing, orientation and distribution of the abyssal hill. This wavelet analysis of bathymetry provides good data to select the mining site.

  • PDF

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Numerical Analyses of 2011 East Japan Tsunami Propagation towards Korean Peninsula (2011년 동일본 지진해일의 한반도 전파 수치해석)

  • Bae, Jae-Seok;Cho, Young-Joon;Kwon, Seok-Jae;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.66-76
    • /
    • 2012
  • The effect of bathymetry near the south sea area of Korea on the propagation of 2011 East Japan Tsunami is analyzed based on the numerical simulation using the finite difference dispersion-correction model. It is found that the bathymetry from the source to Korean Peninsula, such as Nankai Trough, Ryukyu Islands and the topographical lens in the East China Sea, plays an important role to reduce the tsunami height along the south coast of Korea. The mechanism involved in the transformation of tsunamis over those topographies is discussed.

Topographic Analysis of Bathymetry Data Acquired from the KR1 Area of Northeastern Pacific : Application of Wavelet-based Filter (북동태평양 KR1 광구 수심자료의 지형분석 : 웨이브렛 필터의 적용)

  • Jung, Mee-Sook;Kim, Hyun-Sub;Park, Cheong-Kee
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.303-310
    • /
    • 2007
  • 2-D wavelet analysis is applied to bathymetric data from the KR1 area of Korea Deepsea Mining Area. The wavelet analysis is one of the quantitative methods to analyze the topography. The wavelet allows us to create filters to select for topography in a continuous variety of shapes, sizes, and orientation. The 2-D Linear B-spline filter, 100 BS and 100 NF, is convolved with bathymetric data to identify the location of abyssal hills and abyssal troughs in bathymetry. In addition, the 2-D derivative of Cubic B-spline filter, 60 BS and 60 NF, is applied to bathymetric data to find the slope of abyssal hill in bathymetry. These filters were rotated $5^{\circ}$ counterclockwise from NS to match the dominant orientation of seafloor lineament. Both filters result in good match with abyssal hills, troughs, and slopes. This method can apply to fault, fold, and other lineament structures description with variable size. The result of application shows that wavelet analysis of bathymetric data could be used with fundamental data of geophysical analysis.

Comparisons of the Environmental Characteristics of Intertidal Beach and Mudflat

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • The characteristics of morphological shapes, wave heights, tidal ranges and sediment sizes are observed and compared between intertidal beach and mudflat. The Mohang sand beach, southwest coast of Korea, is located just next to the large mudflat and has tidal range over 5 meters. Wave measurements are conducted at each entrance of the beach and mudflat as well as at the outside waters representing the incident waves to these different coastal environments. The morphological characteristics are also examined including the sediment size and the slope of the bathymetry, For the observation of morphological shapes, camera monitoring technique is used to measure the spatial information of intertidal bathymetry. The water lines moving on the intertidal flat/beach durinq a flood indicate depth contours between low and high water lines. The water lines extracted from the consecutive images are rectified to get the ground coordinates of each depth contours and integrated to provide three dimensional information of intertidal topography. The wave data show that sand beach is in the condition of severer wave forcing but tidal range is almost identical in both environment. The slope of the mudflat is much milder than the sand beach with finer sediment.

Coastal Shallow-Water Bathymetry Survey through a Drone and Optical Remote Sensors (드론과 광학원격탐사 기법을 이용한 천해 수심측량)

  • Oh, Chan Young;Ahn, Kyungmo;Park, Jaeseong;Park, Sung Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Shallow-water bathymetry survey has been conducted using high definition color images obtained at the altitude of 100 m above sea level using a drone. Shallow-water bathymetry data are one of the most important input data for the research of beach erosion problems. Especially, accurate bathymetry data within closure depth are critically important, because most of the interesting phenomena occur in the surf zone. However, it is extremely difficult to obtain accurate bathymetry data due to wave-induced currents and breaking waves in this region. Therefore, optical remote sensing technique using a small drone is considered to be attractive alternative. This paper presents the potential utilization of image processing algorithms using multi-variable linear regression applied to red, green, blue and grey band images for estimating shallow water depth using a drone with HD camera. Optical remote sensing analysis conducted at Wolpo beach showed promising results. Estimated water depths within 5 m showed correlation coefficient of 0.99 and maximum error of 0.2 m compared with water depth surveyed through manual as well as ship-board echo-sounder measurements.

Detailed Bathymetry and Seabed Characteristics of Wangdol-cho, Hupo Bank in the East Sea (동해 후포퇴 왕돌초 주변의 정밀해저지형 및 해저면 특성 분석)

  • Kim, Chang Hwan;Park, Chan Hong
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.533-540
    • /
    • 2014
  • The Wangdol-cho area, in the Hupo Bank, plays a very important role in main fishing grounds, leisure tourism and marine environmental researches of the East Sea. We analyzed the detailed bathymetry and classified the seabed characteristics of the Wangdol-cho area, based on seafloor backscattering images and sediment grain size. The Hupo Bank is developed in parallel with the eastern coastal line of Korean peninsula, and the shallowest area (Wangdol-cho) of the Hupo Bank is located along the eastern part of Hupo Port. The Wangdol-cho comprises three summits; north summit, middle summit, and south summit. The middle summit area among the three summits has the most shallow water depth with minimum about 6 m. The north summit shows about 8 m minimum depth and the south summit about 9 m. The bathymetry data around three summits represent undulating seabeds with many scattered underwater reefs and shallow water depth. The area between the underwater reefs, the flat seafloor in the northeastern part of the survey site, and the western steep slope area have relatively coarse sediments such as sandy gravel and gravelly sand. The bathymetry in the western side of the Wangdol-cho shows steep slope seabed, extending to the Hupo Basin. Fine sediments including mud and silty sand occur in the Hupo Basin area of the survey site. The submarine detailed topography and the analysis of the seafloor characteristics of the survey area are expected to contribute to management for marine environmental researches and sustainable use of ecosystems in the Wangdol-cho.