• Title/Summary/Keyword: batholith-type

Search Result 11, Processing Time 0.019 seconds

Intrusive Phases and Igneous Pricesses in the Yeongju Batholith (영주저반의 관입상과 화성과정)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.669-688
    • /
    • 1999
  • The Yeongju granitoid batholith is a plutonic complex of huge area (1180km2) intruding the metamorphic rocks of the Yeongnam massif. The batholith, which is divided into fivelithofacies, consists of three separate plutons. The oldest Buseok pluton comprises four lithofacies: hornblende biotite tonalite, porphyrotoc biotite granodiorite, equigranular biotite grandiorite and biotite granite. The middle Chunyang pluton has been called as Chunyang granite that ranges in compostion from granodiorite to granite. The youngest Jangsu pluton is intrusions that has lithofacies of two mica granite. The contact between Buseok pluton and the rest two plutons shows obvious intrusive relations, but relation between the Chunyang and the Jangsu pluton is far away, so gives no indication of relative ages. Changes in nextures and micristructures, as well as in the mineral contents, take place between rock types og the plutons. only the Buseok pluton shows faliations of two type: magmatic foliation and regional mylonal foliation. K-Ar age deteminations fall into 171.7$\pm$3.2~162.3$\pm$3.1 Ma in the Buseok pluton, 153.9$\pm$2.9 Ma in the Chunyang pluton and 145.3$\pm$2.7 Ma in the jangsu Pluton. The batholith presents three separate intrusive phases which range in composition from tonalite to granite to granite. Each intrusive phase apperars to have been intruded in a pulse from an underlying, differentiating magma. The petrochemical data showthat three plutons are within the diagnostic range for continental arc orogenic tectonic setting, whereas Jangsu pluton approaches postorogenic setting. The data suggest that three plutons are calc-aclkalline series, and that temporal compositional variations change progerssively from tonalite through grandiorite to granite between the intrusive phases. so we consider that the magmas for all the phases were probably derived from a differentiation by fractional crystallization of a parental magma. The tonalite magma of the Buseok phase was tapped was tapped from a chamber deep in the crust, and then would have to rise at a rapid rate to its final level of emplacement. The tonalite magma in the chamber was gradually enolved through granodiorite magma into granite magma by fractional crystallization. The magmas of the younger phases were respectively tapped with temporal interval from a evolved magma of the chamber that rose into a shallower lever in the crust, and rose to their present level of emplacement.

  • PDF

Petrogenesis of Plutonic Rocks in the Andong Batholith (안동저반 심성암류의 암석성인)

  • 황상구;장윤득;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.200-213
    • /
    • 2002
  • The Andong granitoid batholith represents five temporally distinct episodes (phases) of igneous activity. The batholith represents a plutonic complex of five pulsatively emplaced distinct intrusive multiphases. The petrochemical data show that the plutons fall into calc-alkaline series except for the Yean pluton, and plot within the diaenostic range for I-type origin and continental arc orogenic tectonic setting. Each pluton reveals systematic compositional variations of major and trace elements with $SiO_2$ or MgO, but different variation trends for some elements and considerably different REE patterns. Thus discontinuous, inconsistent variations in the elements indicate that the five plutons can not be explained by simple fractional crystallization from the same primary magma, but were intruded and solidified from the independent magmas of chemically heterogeneous origin. In the Andong, Dosan and Pungsan plutons, high values of molar CaO/(MgO+$FeO^{t}$ ) combined with low $Al_2$$O_3$/(MgO+$FeO^{t}$ ) and $K_2$O$Na_2$O ratios suggest a magma originated by dehydration melting of a metabasaltic to metatonalitic protolith. Whereas the Imha pluton show similar values of CaO/(MgO+$FeO^{t}$ ), but significantly higher ratios of $Al_2$$O_3$/(MgO+$FeO^{t}$ ) and $K_2$O$Na_2$O implying to a metagreywacke protolith.

Mineralogy of gold-silver deposits in Chungcheong Province (충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究))

  • Choi, Seon Gyu;Park, No Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.223-234
    • /
    • 1988
  • A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

  • PDF

Geochemical Characteristics of the Jurassic Chunyang Granites in Northeastern Part of the Yeongnam Massif (영남육괴에 분포하는 쥐라기 춘양화강암의 지화학적 특성)

  • Kang, Minyoung;Kim, Yunji;Wee, Soomeen
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.49-63
    • /
    • 2017
  • The geochemical results of the Chunyang granites located in the northeastern part of the Yeongnam Massif, indicate that these rocks have characteristics of calc-alkaline series in the sub-alkaline field, I-type and peraluminous. Most of the geochemical features in major and trace elements show systematic trends, which are similar to differentiation trends of the general Jurassic granitoids in South Korea. The Chunyang granite is largely enriched in mobile LILE (Sr, K, Rb and Ba) relatively immobile HFSE. They show LREE enriched patterns [$(La/Lu)_{CN}=41.8-73.2$] with a slightly negative Eu anomaly [$(Eu/Eu^*)_{CN}=0.89-1.10$]. There are no meaningful correlations in major and trace elements between the Chunyang granites and the Buseok plutonic rock which is the main unit of the Yeongju batholith. This result may suggest that these two plutonic rocks be not derived from the same parent magma. Tectonic discrimination diagrams indicate that the Chunyang granite was formed in volcanic arc environments. These geochemical characteristics results suggest that the Chunyang granite must have been generated at the active continental margin during the subduction of the Jurassic proto-Pacific plate.

Occurrence and petrochemistry of the granites in the Pocheon-Euijeongbu area (포천-의정부 일대에 분포하는 화강암류의 산상과 암석화학)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.91-103
    • /
    • 1995
  • The study area is located at the middle part of Daebo granitic batholith in the Gyeonggi massif. The geology of the area is mostly composed of Precambrian gneiss complex, coarse- grained middle Jurassic and fine-grained early Cretaceous biotite granites, and Cretaceous small stocks and dykes. The gneiss complex consists mainly of banded gneiss, granitc gneiss, some schist and quartzite. The coarse-grained granite can be divided into greyish granite(Gg1 in the margin and slightly pinkish granite(Gp) in the center. The former is hornblende biotite granite characterized by basic clot and xenolith. The latter is generally garnet biotite granite containing only poor basic clot. The fine-grained granite intruded the coarse-grained granite. The K/Ar biotite ages from the granites belong to middle Jurassic and early Cretaceous. The K/Ar biotite ages and geochemical compositions indicate that Gg and Gp were differenciated from a single magmatic body. The granites are calc-alkali and metaluminous-peraluminous. They are S-type(i1menite series) and partly I-type granitedmagnetite series) formed by melting of relatively fixed source composition. Their tectonic settings belong to the compressional suits and VAG of continental margin.

  • PDF

Geochemistry of the Kwanaksan alkali feldspar granite: A-type granite\ulcorner (관악산 알칼리 장석 화강암의 지구화학 : A-형 화강암\ulcorner)

  • S-T.Kwon;K.B. Shin;H.K. Park;S.A. Mertzman
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.31-48
    • /
    • 1995
  • The Jurassic Kwanaksan stock, so far known to be composed of biotite granite only, has the mineral assemblage of quartz+K-feldspar+plagioclase+biotite${\pm}$gernet. The lithology of the stock is classified as alkali feldspar granite by their mode and plagioclase compositions (An<5). Subsolvus feldspars, rather early crystallization of biotite, and shallow emplacement depth estimated from Q-Ab-Or diagram suggest hydrous nature of the magma, which contrasts with anhydrous A-type like geochemistry described below. Major and trace element compositions of the Kwanaksan stock are distinct from those of the adjacent Seoul batholith, suggesting a genetic difference between the two, The Kwanaksan stock shows geochemical characteristics similar to A-type granite in contrast to most other Mesozoic granites in Korea, in that it has high $SiO_2$(73~78wt%), $Na_2O+K_2O$, Ga(27~47 ppm). Nb(22~40 ppm), Y(48~95 ppm), Fe/Mg and Ga/Al, and low CaO(<0.51 wt%). Ba (8~75 ppm) and Sr(2~23 ppm). However, it has lower Zr and LREE and higher Rb(384~796 ppm) than typical A-type granite. LREE-depleted rare earth element pattern with strong negative Eu anomaly of previous studies is reinterpreted as representing source magma characteristics. The residual material during partial melting is not compatible with pyroxenes, amphibole or garnet, while significant amount of plagioclase is required. Similarity of geochemistry of the Kwanaksan stock to A-type granite suggests the origin of the stock has a chose relationship with that of A-type granite. These observations lead us to propose that the Kwanaksan stock was formed by partial melting of felsic source rock.

  • PDF

Electrical Resistivity-Measurements for the Detection of Fracture Zones in the Woraksan Granitic-Bodies (월악산화강암체의 파쇄대규명을 위한 전기비저항탐사)

  • 김지수;권일룡
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.113-126
    • /
    • 1997
  • Electrical resistivity methods of dipole - dipole array profiling and Schiumberger array sounding were tested on a segment of the Woraksan granitic batholith for the research into the imaging of irregular attitudes of fracture zones in the crystaaline rock in terms of processing and interpretation schemes. By the dipole - dipole array method, inhomogeneities such as small scale of fracture zones were properly delineated down at some depth even within hard rock environment. Fracture zones were interpreted to be at the boundaries between the high amplitude zone and very low amplitude zone in the resistivity plot and they were also successfully outlined in two - dimensional layer and pseudo - three - dimensional volume constructed by the incorporation of vertical sounding data. The surface location of the fracture zones was correlated by the zero - crossing point in the VLF(very low frequency) electromagnetic data. Pseudo - three - dimensional attitudes of fracture zones were efficiently illuminated by optimum projection angle. The mean of bulk resistivity for the Woraksan granite and the near fracture zones is estimated to be approximately of 4,000 ohm - m which is much higher than the value of 700 ohm - m for the Rwachunri limesilicate environment. This difference is due to both the rock type, i.e., biotite granite vs limesilicate, and the occurrence of secondary openings of fold and fault associated with the intrusion of granite. In this study statistical analyses on the resistivity color plot were performed in terms of three representative statistical moments, i.e., standard deviation, skewness, and kurtosis. The fracture zones in the standard deviation plot were characterized by the higher value, compared to the value of homogeneous portion. The upper boundary of the high resistivity zone was also successfully delineated in the skewness and kurtosis plots.

  • PDF

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.