• Title/Summary/Keyword: batch processor

Search Result 12, Processing Time 0.031 seconds

On Flexibility Analysis of Real-Time Control System Using Processor Utilization Function (프로세서 활용도 함수를 이용한 실시간 제어시스템 유연성 분석)

  • Chae Jung-Wha;Yoo Cheol-Jung
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.53-58
    • /
    • 2005
  • The use of computers for control and monitoring of industrial process has expanded greatly in recent years. The computer used in such applications is shared between a certain number of time-critical control and monitor function and non time-critical batch processing job stream. Embedded systems encompass a variety of hardware and software components which perform specific function in host computer. Many embedded system must respond to external events under certain timing constraints. Failure to respond to certain events on time may either seriously degrade system performance or even result in a catastrophe. In the design of real-time embedded system, decisions made at the architectural design phase greatly affect the final implementation and performance of the system. Flexibility indicates how well a particular system architecture can tolerate with respect to satisfying real-time requirements. The degree of flexibility of real-time system architecture indicates the capability of the system to tolerate perturbations in timing related specifications. Given degree of flexibility, one may compare and rank different implementations. A system with a higher degree of flexibility is more desirable. Flexibility is also an important factor in the trade-off studies between cost and performance. In this paper, it is identified the need for flexibility function and shows that the existing real-time analysis result can be effective. This paper motivated the need for a flexibility for the efficient analysis of potential design candidates in the architectural design exploration or real time embedded system.

Online Monaural Ambient Sound Extraction based on Nonnegative Matrix Factorization Method for Audio Contents (오디오 컨텐츠를 위한 비음수 행렬 분해 기법 기반의 실시간 단일채널 배경 잡음 추출 기법)

  • Lee, Seokjin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.819-825
    • /
    • 2014
  • In this paper, monaural ambient component extraction algorithm based on nonnegative matrix factorization (NMF) is described. The ambience component extraction algorithm in this paper is developed for audio upmixing system; Recent researches have shown that they can enhance listener envelopment if the extracted ambient signal is applied into the multichannel audio upmixing system. However, the conventional method stores all of the audio signal and processes all at once, so it cannot be applied to streaming system and digital signal processor (DSP) system. In this paper, the ambient component extraction algorithm based on on-line nonnegative matrix factorization is developed and evaluated to solve the problem. As a result of analysis of the processed signal with spectral flatness measures in the experiment, it was shown that the developed system can extract the ambient signal similarly with the conventional batch process system.