• Title/Summary/Keyword: batch experiment

Search Result 452, Processing Time 0.039 seconds

Recovery of Gallium from GaAs Scraps by Thermal Decomposition (GaAs Scrap으로부터 熱分解法에 의한 갈륨 回收)

  • Choi, Young-Yoon;Nam, Chul-Woo;Yu, Yeon-Tae;Kim, Wan-Young
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.28-32
    • /
    • 2005
  • By using thermal decomposition method, the preliminary experiments for recovery of metallic Ga from GaAs scraps produced in the manufacturing of compound semiconductors were carried out in laboratory(200 g/batch) scales. From these results, decomposition appratus with packed tower was constructed in commercial scale(30 kg/batch). The decomposition rate of GaAs increased with raising decomposition temperature, but the yield of Ga decreased over 1000$^{\circ}C. As a result, the optimum decomposition temperature was 1000~1050$^{\circ}C when the pressure of decomposition reactor was 2~2.5${\times}10^{-2} mmHg, and the yield of Ga was about 89 wt.%. The commercial decomposition apparatus was designed with packed tower because the partial pressure of As in vapor state was not reduced even if the temperature of As vapor was decreased. The recovery yield of Ga from GaAs scraps in large scale experiment showed 99%.

Aerobic Treatment of Pigment Wastewater using Ceramic Support Carrier (세라믹 담체를 이용한 안료폐수의 호기성처리)

  • Park, Yeong-Sik;An, Gap-Hwan
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2001
  • Wastewater from the pigment industry has high levels of organics and is known as hardly biodegradable. The objective of this study is to evaluate the applicability of aerobic fixed-bed boifilm reactor packed with ceramic support carrier for the pigment wastewater treatment. Orange 2(widely used azo pigment) adsorption experiment onto biofilm and activated sludge, and continuous treatment experiments were performed. In batch adsorption experiment, maximum adsorption quantity of biofilm was at least two times higher than that of activated sludge. In continuous experiment using aerobic fixed-bed biodilm reactor, the influent concentration of COD and Orange 2 were 75~500mg/${\ell}$(0.45~3.00kg COD/$m^3.day), 5~50mg/$\ell$(0.03~0.30kg Orange 2/$m^3$.day), respectively. At a COD loading rate 2.5kg COD/$m^3$.day and Orange 2 loading rate of 0.18kg Orange 2/$m^3$.day, removal efficiency of COD and Orange 2 were over 95%, 97%, respectively.

  • PDF

Kinetics and Optimization of Dimethyl Carbonate Synthesis by Transesterification using Design of Experiment

  • Lee, Kilwoo;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.416-420
    • /
    • 2018
  • A comprehensive kinetic study has been conducted on dimethyl carbonate synthesis by transesterification reaction of ethylene carbonate with methanol. An alkali base metal (KOH) was used as catalyst in the synthesis of DMC, and its catalytic ability was investigated in terms of kinetics. The experiment was performed in a batch reactor at atmospheric pressure. The reaction orders, the activation energy and the rate constants were determined for both forward and backward reactions. The reaction order for forward and backward reactions was 0.87 and 2.15, and the activation energy was 12.73 and 29.28 kJ/mol, respectively. Using the general factor analysis in the design of experiments, we analyzed the main effects and interactions according to the MeOH/EC, reaction temperature and KOH concentration. DMC yield with various reaction conditions was presented for all ranges using surface and contour plot. Furthermore, the optimal conditions for DMC yield were determined using response surface method.

Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay) (카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성)

  • Cho, Hyen-Goo;Choi, Jae-Ho;Moon, Dong-Hyuk;Kim, Soo-Oh;Do, Jin-Youn
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

Effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) Process on Removal of the Organic Matters in Ammonia Stripped Swine Wastewater (ASBR(Anaerobic Sequencing Batch Reactor) 공정의 F/R비가 암모니아가 탈기된 축산폐수의 유기물 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.687-694
    • /
    • 2005
  • Lab-scale experiments have been carried out to investigate the effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) process on the removal of the organic matters in ammonia stripped swine wastewater. Three ASBR inoculated with sludge mixed with granular sludge of UASB (Upflow Anaerobic Sludge Blanket) and anaerobic digested sludge of municipal wastewater treatment plant were operated. Ammonia stripped swine wastewater was used as influent. Prior to conducting the experiments with varied conditions, the effect of increasing organic loading rate from 2.34 to $5.79gTCOD_{Cr}/L$-day at a fixed F/R ratio of 0.1 on the organic removal efficiency has been studied during start-up period. As the result of the experiment, under the condition of varied organic loadings, less than $4.14gTCOD_{Cr}/L$-day, the removed efficiency $TCOD_{Cr}$ of the ASBR process is 83% resulted from the mean value of effluent $TCOD_{Cr}$, 9,125 mg/L during the start-up period. Then ASBRs were operated with F/R ratio of 0.024, 0.303 and 0.91 respectively. Organic loading rate was increased from 4.56 to $15.43gTCOD_{Cr}/L$-day to investigate the effects of F/R ratio and organic loading rate on the organic removal efficiency. As the result of the experiment, less than $6.23gTCOD_{Cr}/L$/L-day, F/R ratio haven't an effect on the organic removal efficiency and the mean removal efficiency of TSS, $TCOD_{Cr}$ and $SCOD_{Cr}$ was about 80%, 86% and 78% at the all of F/R ratio. But as organic loading rate was increased from 8.54 to $12.04gTCOD_{Cr}/L$-day at the F/R ratio of 0.024, the removal efficiency of $SCOD_{Cr}$ decreased from 71% to 63%. The range of decreased removal efficiency of $SCOD_{Cr}$ at the F/R ratio of 0.024 was much more higher than at the F/R ratio of 0.303, 0.91. Thus, as organic loading rate was increased, ASBRs were operated with high F/R ratio to obtain high removal efficiency.

Phosphate Adsorption of Kaolinite KGa-1b (Source Clay) (카올리나이트 KGa-1b(표준 점토)의 인산염 흡착 특성)

  • Cho, Hyen-Goo;Johnston Cliff T.;Gnanasiri S. Premachandra G.S.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.247-258
    • /
    • 2006
  • The characteristics of phosphate adsorption on kaolinite was studied by batch adsorption experiments. The phosphorous contents was measured using UV spectrometer with 820 nm wavelength. The experiment with changing reaction time revealed that fast P adsorption occurred within $0{\sim}12$ hour, whereas slow adsorption reaction began after 12 hour. The adsorption percentage depended on kaolinite amount in phosphate solution. Rotary-shaker enhanced the adsorption percentage up to $11{\sim}15%$. The phosphorous adsorption appears to be insensitive to change in the ionic strength of KCl between 0.01 M and 0.1 M. From this result, we can conclude that phosphate was adsorbed on kaolinite as inner-sphere complexes. However, the ionic strength increased to 1.0 M, adsorption decreased. It suggests that phosphate may be adsorbed as outer-sphere complexes. Phosphate adsorption decreased with increasing pH value, but it is not distinct. The adsorption isotherms were well fitted with the Langmuir equation.

Improvement of Pesticide Sorption Measurement Method for Soils with Low Sorption (흡착력(吸着力)이 낮은 토양(土壤)에서의 농약흡착(農藥吸着) 측정법(測定法) 개발(開發))

  • Kim, Sun-Kwan;Green, Richard E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.124-129
    • /
    • 1991
  • A mass balance method which measures directly both the sorbed pesticide and equilibrium solution concentration was compared with the batch method in a hypothetical experiment to determine the precision of sorption measurement. The mass balance method was shown to improve precision of sorption measurement. The two methods were also tested experimentally on the Wahiawa soil, 0-20, 40-60 and 100-120 cm, and Salinas soil, 0-15 and 115-130 cm. The mass balance method greatly improved precision of sorption measurement on the deep Wahiawa subsoil having the lowest sorption. The coefficient of variation (CV) for $K_d$ measurement was 20.3% for the batch method and 8.4% for the mass balance method. For other soil samples tested, precision of the batch method was relatively high but was still improved by the mass balance method.

  • PDF

Study on The Qptimization of Operating Conditions of batch-type Grain Dryer (평면식 건조기의 적정작업조건 설정에 관한 연구)

  • 박경규;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.4
    • /
    • pp.3600-3610
    • /
    • 1974
  • Experimental work of batch-type dryer was conducted to develop its optimurm operating conditions by analyzing the major factors which affect the drying performance. A laboratory batch-type dryer was constructed and tested for various levels of heated-air rates, and depths of grain deposit. Tong-il rice variety having the initial moisture content of approximaely 23 per cent in wet basis was used for the experiment. The criteria selected for establishing the optimum operating condition were the drying performance rate, the thermal efficiency, and the operational cost of the dryer. The results of the study are summarized as follows: 1. The performance rate of dryer for a specific operating condition was defined as total amount of material dried per hour when the moisture content of grains in the upperlayer reaches to 16 per cent in wet basis. The optimum operating conditions as viewed in the rate of drying performance could be justified by functional realtionship between the depth of grain deposit and air flow rate. In other words, there was a definite depth of grain deposit for a given air-rate which make the dryer performance maximum. The optimum grain depth for the batch-type dryer with 3.3㎡ loading area and with the attached axial fan was about 35cm. 2. The thermal efficiency for the dryer was evaluated by the ratio of the latent heat required to evaporate the grain moisture to the heat input required to raise the ambient air-temperature to 40 degree centigrade. The optimum operating condition as viewed in term of thermal efficiency analyzed was that grater depth and lower air flow-rate may be desirable. This condition is contracted with the optimum condition as viewed by the dryer performance rate. 3. The annual operating cost of batch-type dryer was analyzed for different annual hour of use and for different operation condition. The optimum condition as viewed in terms of operating cost was almost identical to one as viewed in terms of dryer performance rate. Therefore, the most economical use of batch-type dryer for the same annual operating hours can be obtained when the dryer operated in the condition of maximum dryer performance rate. Increasing the annual operating hour may be desirable to cut down the dryer operation cost, since the annual hour of dryer use is much sensitive to the operating cost than any peractical conditions of dryer operation. 4. The most desirable operational condition as justified by combining all the criteria, dryer performance rate, thermal efficiency and annual operating cost, could be concluded to operate the dryer in the condition of maximum performance rate. The condition in general is identical to the lowest operation cost for a given annual operating hour.

  • PDF

Stress Analysis in Bar Welding Process for Endless Rolling Application (연연속 압연 공정에서 판 접합 공정의 응력해석)

  • 정제숙;김호영;이종섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.327-335
    • /
    • 1999
  • A batch process in which transfer bars are rolled in single bar units involves many problems in terms of quality, yield and threading stability. The endless rolling process is an effective solution to such problems. In this, study, an analysis model is proposed to calculate the distribution of normal stress in endless rolling process. The model was examined by comparing with the result of experiment. A device using the spring is developed for improving the welding quality.

  • PDF

An Experimental Study on Anaerobic Acidogenesis Product Distributions (혐기성 산생성상에 있어서 온도 및 pH조건에 따른 생성물질의 분포상태)

  • Ahn, Ho-Hyeoug;Kim, Dong-Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.2 s.7
    • /
    • pp.91-99
    • /
    • 1989
  • An anaerobic acidogenic fermentation experiment was carried out in order to investigate the distribution of volatile acid products and gas generations with varing temperatures and pH values. The experiment was carried out using $1\%$ glucose as substrate and a pair of 3.5 liter vessle as bench scale batch reactors. The reactors were operated for 7 days at 25, 30 and $35^{\circ}C$ and at pH values of 4.0, 4.5, 5.0, 5.5 and 6.0 at each temperature conditions. Major products at all experiment pH's at $35^{\circ}C$ were acetic acids and butyric acids which together composed around $90^{\circ}F$ of total product acids. At higher pH values at $35^{\circ}C$, propionic acid reached around $10\%$. At all experiment conditions, 52 to $55\%$ of generated gases comprised of hydrogen gas and 45 to $48\%$ of carbon dioxide. With temperature increase from 25 to $35^{\circ}C$, the production rate of acetic acid increased 2.9 fold, butyric acid 22 fold, hydrogen gas 2.0 fold and carbon dioxide gas 2.3 fold. Optimum reaction conditions for highest production of acetic acid and hydrogen gas was determined to be pH 5.5 at $35^{\circ}C$.

  • PDF