• Title/Summary/Keyword: basic macrolide antibiotics

Search Result 3, Processing Time 0.019 seconds

New Antibiotics Produced by Streptomyces melanosporofaciens II. Antimicrobial Activities and Isolation, Purification, and Structure Determination of the Active Compound (Streptomyces melanosporofaciens가 생산하는 새로운 항생물질 II. 물질의 항균활성과 황성물질의 분리.정제 및 구조결종)

  • 김시관;김상석;김근수;정영륜;김창한
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.235-241
    • /
    • 1991
  • - A phthalic acid derivative and basic macrolide antibiotics, with antimicrobial activity against Gram positive bacteria and phytopathogenic fungi, respectively, were found to be produced by a strain 88-GT-161 identified as being a variety of Streptomyces melanosporofaciens. This paper describes an isolation procedure of the active compounds produced by this strain, their in vitro and in vivo (pot test) antimicrobial activites, and structure determination of one of the compounds, bis (2-ethylhexyl) phthalate, a phthalic acid derivative antibiotic. This compounds, upon cornparision with authentic bis (2-ethylhexyl) phthalate, dioctyl phthalate, revealed a difference in antimicrobial activity even though physico-chemical properties of these two compounds seemed indentical. This is the first report that dioctyl phthalate is biosynthetically produced by a Streptomyces sp. and shows antimicrobial activity.

  • PDF

New Antibiotics Produced by SEreptomyces mekmosporofaciens I. Taxonomy of the producing microorganism (Streptomyces melanosporofaciens가 생산하는 새로운 항생물질 I. 생산균의 분류 . 동정)

  • 김시관;김상석;김창한
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.624-632
    • /
    • 1990
  • Strain 88-GT-161 producing new phthalic acid derivative and basic macrolide antibiotics was identified as being S. melanosporofuciens based on numerical taxonomic data. However, 4 unit characters among 139 units were clearly different from the common properties of 6 strains belonging to cluster No. 32 represented by the name of S. violaceoniger or S. violaceusniger, leading us to designate as a variety of S. melunosporofaciens. This paper describes the taxonomic characteristics of the strain. Isolation and chemical structures, including biological activities of the active compounds produced by this strain will be presented elsewhere.

  • PDF

Site-directed Mutagenesis Analysis Elucidates the Role of 223/227 Arginine in 23S rRNA Methylation, Which Is in 'Target Adenine Binding Loop' Region of ErmSF (위치 지정 치환 변이를 이용한 ErmSF의 '타깃 Adenine Binding Loop'을 형성하는 부위에 존재하는 223/227 Arginine 잔기의 23S rRNA Methylation 활성에서의 역할 규명)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • ErmSF is one of the Erm family proteins which catalyze S-adenosyl-$_L$-methionine dependent modification of a specific adenine residue (A2058, E. coli numbering) in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B ($MLS_B$) antibiotics. $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) sequence appears to be a consensus sequence among the Erm family. This sequence was supposed to be involved in direct interaction with the target adenine from the structural studies of Erm protein ErmC'. But in DNA methyltarnsferase M. Taq I, this interaction have been identified biochemically and from the complex structure with substrate. Arginine 223 and 227 in this sequence are not conserved among Erm proteins, but because of the basic nature of residues, it was expected to interact with RNA substrates. Two amino acid residues were replaced with Ala by site-directed mutagenesis. Two mutant proteins still maintained its activity in vivo and resistant to the antibiotic erythromycin. Compared to the wild-type ErmSF, R223A and R227A proteins retained about 50% and 88% of activity in vitro, respectively. Even though those arginine residues are not essential in the catalytic step, with their positive charge they may play an important role for RNA binding.