• 제목/요약/키워드: basic event

검색결과 412건 처리시간 0.021초

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

폐쇄성 수면 무호흡이 전신성 혈압, 심조율 및 요 Catecholamines 농도 변화에 미치는 영향 (The Influence of Obstructive Sleep Apnea on Systemic Blood Pressure, Cardiac Rhythm and the Changes of Urinary)

  • 노대근;최영미;송정섭;박성학;문화식
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권1호
    • /
    • pp.153-168
    • /
    • 1998
  • 연구배경: 폐쇄성 수면 무호흡 증후군 환자들에서 동반될 수 있는 전신성 고혈압과 심부정백을 포함한 심혈관계 기능 부전은 장기사망률을 증가시키는 중요한 요인으로 생각되고 있다. 그러나 이들 환자에서 심혈관계 기능부전이 발생하는 병태생리학적 기전에 관한 정설은 확립 되지 못한 실정이다. 방 법: 저자들은 폐쇄성 수면 무호흡 증후군 환자 29명과 대조군 25명을 대상으로 수면다원검사, 각성시와 수면 중 요 catecholamines 농도 측정, 24 시간 활동중 심전도 및 혈압 감시를 실시하여 자료를 비교 분석함으로써 폐쇄성 수면 무호흡이 전신성 혈압, 심조율 및 요 catecholamines 농도 변화에 미치는 영향을 이해하고자 하였다. 결 과: 1) 요 norepinephrine (UNE) 및 epinephrine(UEP) 농도는 페쇄성 수면 무호흡증후군환자와 대조군 모두에서 각성시에 비하여 수면중에 유의하게 감소하였다(P<0.01). 폐쇄성 수면 무호흡 증후군 환자들의 수면중 UNE 농도는 대조군에 비하여 유의하게 높았으나(P<0.05), 각성시 UNE 농도는 대조군과 유의한 차이가 없었다. 두군 모두에서 전신성 고혈압의 동반 여부와 각성시 및 수면중 UNE 및 UEP 농도 상호간의 관련성은 없었다. 2) 폐쇄성 수면 무호흡 증후군 환자들에서는 수면 중 혈압 하강이 없는 경우 (non-dipper) 가 통계적으로 유의하지는 않았으나 대조군에 비하여 많은 경향을 보였으며(P=0.089), 수면중 혈압 하강의 유무와 전신성 고혈압의 동반 여부와는 상호 관련성이 없었다. 3) 전체 연구 대상에서 각성시 및 수면중 평균 수축기 혈압은 무호흡지수, 무호흡-저호흡지수, 수면중 최저 산소포화도, 수면중 산소 탈포화정도와 상호 관련성이 있었으며, 수면중 UNE 농도는 무호흡지수, 무호흡-저호흡지수, 수면중 최저 산소포화도 및 산소 탈포화정도, 수면중 평균 수축기 혈압과 관련성이 있었다. 4) 무호흡지수가 20 이상인 14명의 폐쇄성 수면 무호흡 증후군 환자들에서 무호흡 시기 동안의 섬박동수는 무호흡이 시작되기 전에 비하여 감소하였고, 무호흡이 끝나고 호흡이 재개되는 시기에는 우호흡이 시작되기 전에 비하여 유의한 증가를 보였으며 (P<0.01), 이러한 변화는 무호흡의 기간이 길수록 더욱 현저하였다 (P<0.01). 무호흡 시기와 무호흡이 끝나고 호흡이 재개되는 시기의 심박동수 차이 (${\Delta}HR$) 는 무호흡 발생 전후의 동맥혈 산소포화도의 차이 (${\Delta}SaO_2$)와 매우 유의한 상관관계를 보였다 (r=0.223, P<0.001). 5) 심부정맥의 발생 빈도는 두군 사이에 유의한 차이가 없었으며, 대조군에서는 심실성 기외수축이 각성시에 비하여 수면중에 현저히 감소하였으나(P<0.05), 폐쇄성 수면 무호흡 증후군 환자들에서는 수면중에도 각성시와 차이가 없었다. 결 론: 폐쇄성 수면 무호흡 증후군 환자들은 수면중에 무호홉, 저산소증 및 각성의 주기가 반복됨으로써 교감신경계 활성도의 변화가 초래될 수 있으며, 반복되는 저산소증과 교감신경계 활성도 증가는 전신성 혈압 및 심기능의 변화를 포함한 여러 가지 심혈관계 기능부전의 발생에 영향을 미칠 것으로 생각된다.

  • PDF