• Title/Summary/Keyword: basement width

Search Result 27, Processing Time 0.029 seconds

Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay

  • Wanchun Chen;Lixian Tang;Haijun Zhao;Qian Yin;Shuang Dong;Jie Liu;Zhaohan Zhu;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • By conducting three-dimensional simulation with consideration of small-strain characteristics of soil stiffness, the effects of excavation geometry and tunnel cover to diameter ratio on deformation mechanisms of an existing tunnel located either at a side of basement or directly underneath the basement were systematically studied. Field measurements were used to verify the numerical model and model parameters. For basement excavated at a side of an existing tunnel, the maximum settlement and horizontal displacement of the tunnel are always observed at the tunnel springline closer to basement and tunnel crown, respectively, regardless of basement geometry. By increasing basement length and width by five times, the maximum movements of tunnel located at the side of basement and directly underneath the basement increase by 450% and 186%, respectively. Obviously, tunnel movements are more sensitive to basement length rather than basement width. For basement excavated at a side of an existing tunnel, tunnel movements at basement centerline become stable when basement length reaches 10 He (i.e., final excavation depth). Moreover, tunnel heaves due to overlying basement excavation become stable when the normalized basement length (L/He) is larger than 8.0. As tunnel cover to diameter ratio varies from 2.5 to 3.0, the maximum heave and tensile strain of tunnel due to overlying basement excavation decrease by up to 41.0% and 44.5%, respectively. If basement length is less than 8 He, the assumption of plane strain condition of basement-tunnel interaction grossly overestimates tunnel movements, and ignores tensile strain of tunnel along its longitudinal direction. Thus, three-dimensional numerical analyses are required to obtain a reasonable estimation of tunnel responses due to adjacent and overlying basement excavations in clay.

Investigations of countermeasures used to mitigate tunnel deformations due to adjacent basement excavation in soft clays

  • Jinhuo Zheng;Minglong Shen;Shifang Tu;Zhibo Chen;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.563-573
    • /
    • 2024
  • In this study, various countermeasures used to mitigate tunnel deformations due to nearby multi-propped basement excavation in soft clay are explored by three-dimensional numerical analyses. Field measurements are used to calibrate the numerical model and model parameters. Since concrete slabs can constrain soil and retaining wall movements, tunnel movements reach the maximum value when soils are excavated to the formation level of basement. Deformation shapes of an existing tunnel due to adjacent basement excavation are greatly affected by relative position between tunnel and basement. When the tunnel is located above or far below the formation level of basement, it elongates downward-toward or upward-toward the basement, respectively. It is found that tunnel movements concentrate in a triangular zone with a width of 2 He (i.e., final excavation depth) and a depth of 1 D (i.e., tunnel diameter) above or 1 D below the formation level of basement. By increasing retaining wall thickness from 0.4 m to 0.9 m, tunnel movements decrease by up to 56.7%. Moreover, tunnel movements are reduced by up to 80.7% and 61.3%, respectively, when the entire depth and width of soil within basement are reinforced. Installation of isolation wall can greatly reduce tunnel movements due to adjacent basement excavation, especially for tunnel with a shallow burial depth. The effectiveness of isolation wall to reduce tunnel movement is negligible unless the wall reaches the level of tunnel invert.

An Experimental Study on Crack Control of Core-wall Using 700kg/$\textrm{cm}^2$ Ultra High Strength Concrete (초고강도 콘크리트로 타설된 내부코아 벽체의 균열발생 및 제어에 관한 실험적 연구)

  • 윤영수;이승훈;노병용;박희도
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.201-206
    • /
    • 1995
  • This paper presents the experimental study on crack control of core-wall placed with 700kg/$\textrm{cm}^2$ Ultra high strength concrete. The thermal sensors were installed into the core-walls prior to the concrete casting to measure the heat of hydration and atmospheric temperature whose difference might cause the initial crack. Several curing schemes were taken for each basement floor 8 thru 6 to examine the influence of curing method on the crack width, total crack length and the number of crack occurred. This paper demonstrates that the proper curing scheme have a great favorable effect on the initial crack control on the structural elements with noticiable reduction in crack width.

  • PDF

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.

The Development of Small and Medium Watergate Design System to the CIM Basement (CIM 기반용 중.소형 수문설계시스템 개발)

  • 성백섭;박창언;김일수;김인주;차용훈;김성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.330-335
    • /
    • 2001
  • Characteristics of the present world market include demanding and sophisticated customers, requirement of high quality and innovative products, greater product diversity, increasing labour and products costs, availability of diverse alternatives to the customers and smaller batch sizes to satisfy a variety of customer profiles. To fulfil these characteristics, manufacturing companies need to be flexible adaptable, proactive and able to produce variety of products in short time at low cost. The aim of the study is to develop a computer-aided design system for water-gate on AutoCAD R2000 system. The developed system has been written in AutoCAD and VisualLISP with a personal computer, and is composed four modules which are the gate-lifter input module, guide-frame input module, and upgrade module. Based on knowledge-based rules, the system is designed by considering several factors, such as width and height of a water-gate, material, object of product and maximum depth of water.

  • PDF

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Transmission electron microscopic ultastructure of the tegument of Fibricola seoulenis (Fibricola seouenis 표피의 투과전자현미경적 미세구조)

  • 손운목;이순형
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.4
    • /
    • pp.301-314
    • /
    • 1993
  • An electron microscopic study was performed to observe the ultrastructure of the tegument of U seoulensis. The outer surface of the tegument was covered with a tnlaminated plasma membrane. The electron-dense cytoplasmic layer was $2.5{\;}\mu\textrm{m}$ wide In the anterior portion and contained numerous vacuoles, mitochondriae and granular materials in its matrix. The basement layer was 330 nm wade or so, and Its numerous extensions protruded into the cytoplasmic layer. The sensory organ was composed of a small vesicle of $1.7{\;}{\times}{\;}1.1{\;}\mu\textrm{m}$ in dimensions, which possessed a cilium of $1.2{\;}{\times}{\;}0.19{\;}\mu\textrm{m}$ in size. The pharynx was composed of the epithelial layer of about $0.5{\;}\mu\textrm{m}$ wide, well developed muscle layer and basement layer. The tegument of the oral sucker was composed of a cytoplasmic layer of $0.4-0.5{\;}\mu\textrm{m}$ width, a narrow basement layer, a well developed muscle layer and tegumental cells. Some kinds of secretory granules that seemed to be originated from the cells of the oral sucker were observed In the parenchymal portions of the adjacent cells. The tribocytic organ consisted of numerous microvilli. The microvilli were 5 nm wide and heptalaminated. Two types of secretory granules originated from the gland cells of tribocytic organ were observed In the tegument and parenchyme. The tegumental cells were irregular in shape, and of which nuclei were multifarious.

  • PDF

A Study on the Facility Accessibility of the Wheelchaired Persons for the Concept of Universal Design (휠체어 사용자의 Universal Access를 위한 시설 접근성 연구)

  • Jin, Sangeun;Yoo, Youngmi;Lee, Junhee;Park, Wongu
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.54-61
    • /
    • 2018
  • Objective: The current study aimed to investigate the accessibility and usability of the disabled person while using the everyday facility. Background: The national laws regulated accommodation of persons with disabilities, but our knowledge on the practical usefulness of the laws and acceptance by the users is still far from complete. Method: Compliance with laws was checked throughout the actual measurement of 87 engineering designs in the facilities of a national university, and the practical usability of the facilities was investigated by in-depth interviews with eight disabled persons. New design solutions were developed by the anthropometric methodology for better accommodation. The target-specific anthropometry database such as sitting knee height with wheelchair was employed. Results: First, the statistic showed that 28.7% of facility designs comply with the law, 29.9% of facility designs doesn't comply with the law, and 41.4% of facility designs doesn't have related law or regulation. Second, the law of table height(71cm in current) can accommodate only 49.3% of wheelchaired population. The following test for 95% accommodation revealed that the table with 80cm high is required. Third, the current law in the door width(90cm) can only accommodate 82.6% of disabled persons, so the new design solution was calculated and suggested that 100cm in the door width is necessary for 99% accommodation of disabled persons. Conclusion: Even with the laws and regulations for the disabilities it was clear that the accessibility and usability of the disabled persons in everyday facilities was still limited. An investigation for the new solutions about a wide range of facilities is necessary for better practical accessibility and usability of the handicapped persons. Application: The results of current study can be a basement of developing a new guideline or regulation of the facility design for the disabled persons.

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro;Dildar Ali Mangnejo;Naeem Mangi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.251-265
    • /
    • 2023
  • In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

Remodeling Project of the 'Yeonsinae' Catholic Church (연신내 성당 리모델링 구축 프로젝트)

  • Bae, Kang-Hee;Lee, Hyok-Jun
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2006.05a
    • /
    • pp.53-54
    • /
    • 2006
  • Recently with increasing interest in the operation of life cycle, building remodeling business is spreading like a fashion. Keeping pace with the trend, the present project carried out the remodeling of an existing neighborhood facility into a religious facility based on the concepts of remodeling, reform and renovation. Basic requirements were overcoming spatial limitations, solving structural problems, meeting various functional needs, and securing a spatial size, and the project designed the interior of the building according to these requirements suggested by the owner. To overcome the low floor height of the existing space, the main sanctuary on the 1st floor had the ceiling in the form of a slant and installed indirect lighting into the resulting gaps, maximizing the depth and width of the space visually. The subsidiary sanctuary on the first basement was finished with red bricks, forming an arch using the bricks, to create religious atmosphere. However, considering the low floor height as in the 1st floor and the ceiling even lowered by the arch structure, the arch was formed threefold and the radius of the curvature of the arch was enlarged to secure a spacious feeling. The outer appearance was finished with granite on existing structure to save the cost of construction. In addition to the use of the finishing material, the structure of the arch and the frame of the opening part and the finishing of the walls were expressed with uneven surface in order to avoid the plainness of the appearance.

  • PDF