• Title/Summary/Keyword: baseline wandering

Search Result 25, Processing Time 0.023 seconds

PVC Classification Algorithm Through Efficient R Wave Detection

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.338-345
    • /
    • 2013
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and the prevention of possible life threatening cardiac diseases. Most methods for detecting arrhythmia require pp interval, or the diversity of P wave morphology, but they are difficult to detect the p wave signal because of various noise types. Thus, it is necessary to use noise-free R wave. So, the new approach for the detection of PVC is presented based on the rhythm analysis and the beat matching in this paper. For this purpose, we removed baseline wandering of low frequency band and made summed signals that are composed of two high frequency bands including the frequency component of QRS complex using the wavelet filter. And then we designed R wave detection algorithm using the adaptive threshold and window through RR interval. Also, we developed algorithm to classify PVC using RR interval. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate average detection rate of 99.76%, sensitivity of 99.30% and specificity of 98.66%; accuracy respectively for R wave and PVC detection.

A Study on The Method of Real-Time Arrythmia monitoring Using Modified Chain Coding (Modified Chain Coding 을 이용한 실시간 부정맥 모니터링 기법에 관한 연구)

  • Yun, Ji-Young;Lee, Jeong-Whan;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.31-35
    • /
    • 1996
  • This paper presents a real time algorithm for monitoring of the arrythmia of ECG signal. A real time monitoring, following by detecting a QRS complex, is the most important. Using 2-dimensional time-delay coordinates which are reconstructed by the phase portrait plotting special trajectory, we detect QRS complexes. In this study, arrythmias are detected by matching the past standard template with tile present pattern when changing abruptly In order to matching with each other, we propose modified chain coding algorithm which applies vetor table consisting of eight orthonormal code(=binary code) to the phase portraits. This algorithm using logical function increases the weight if exceeding to the threshold determinded by correlation value and the distance from a straight line(y=x). Evaluating the performance of the proposed algorithm, we use standard MIT/BIH database. The results are fellowing, 1) Improve the speed of matching template than that of cross-correlation ever has been used. 2) Because the proposed algorithm is robust to varing fiducial point, it is possible to monitor the ECG signal with irregular RR interval. 3) In spite of baseline wandering owing to the low frequency noise, monitoring performance is not reduced.

  • PDF

A Study on the Weighing scales Design for Electrical Activity Monitoring of the Heart (심장의 전기활동 측정이 가능한 체중계 설계에 관한 연구)

  • Lee, Kang-Hwi;Kang, Seung-Jin;Kim, Kyung-Nam;Min, Se-Dong;Choi, Dong-Hak;Lee, Jeong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1822-1825
    • /
    • 2015
  • 본 논문에서는 운동 전후 또는 심장 질환과 관련 있는 사용자가 체중을 측정하면서 동시에 심전도 신호를 측정하여 운동 부하에 따른 심장의 활동 상태를 모니터링 할 수 있는 장치를 고안하였다. 이를 위한 방법으로 체중계에 수정된 바이폴라 금속전극을 적용하여 표준사지 측정법을 이용하여 심장활동 신호를 측정할 수 있는 방법을 제안하였다. 체중계에서 심전도를 측정하기 위해 기존의 Ag-AgCl 전극이 아닌 금속 판 형태의 전극을 사용하였으며 이를 위해 입력 임피던스의 설계를 브릿지 형의 AC-Coupling 회로를 통해 높은 CMRR이 유지되도록 설계하였다. 또한 시시각각 변화하는 노이즈를 제거하기 위해 Savitzky-golay filter를 사용하였으며 이를 통해 Baseline wandering 이 제거된 최종 심장활동 신호를 획득하였다. R-peak 검출을 통해 기준신호와의 심박수 및 Sensitivity의 비교평가를 수행하여 이 장치의 성능을 평가한 결과 심박 검출률의 평균 Sensitivity가 97.1%로 나타났다. 동잡음 제거에 대한 알고리즘이 보다 최적화 되어 최종 출력 신호의 안정성이 향상 된다면 체중계를 통한 심박 검출의 가능성과 그 유효성이 충분할 것으로 사료된다.

Development of a Stress ECG Analysis Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 스트레스 심전도 분석 알고리즘의 개발)

  • 이경중;박광리
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-278
    • /
    • 1998
  • This paper describes a development of efficient stress ECG signal analysis algorithm. The algorithm consists of wavelet adaptive filter(WAF), QRS detector and ST segment detector. The WAF consists of a wavelet transform and an adaptive filter. The wavelet transform decomposed the ECG signal into seven levels using wavelet function for each high frequency bank and low frequency bank. The adaptive filter used the signal of the seventh lowest frequency band among the wavelet transformed signals as primary input. For detection of QRS complex, we made summed signals that are composed of high frequency bands including frequency component of QRS complex and applied the adaptive threshold method changing the amplitude of threshold according to RR interval. For evaluation of the performance of the WAF, we used two baseline wandering elimination filters including a standard filter and a general adaptive filter. WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of results of QRS complex detection, we compared our algorithm with existing algorithms using MIT/BIH database. Our algorithm using summed signals showed the accuracy of 99.67% and the higher performance of QRS detection than existing algorithms. Also, we used European ST-T database and patient data to evaluate measurement of the ST segment and could measure the ST segment adaptively according to change of heart rate.

  • PDF

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF