• Title/Summary/Keyword: baseflow index

Search Result 21, Processing Time 0.024 seconds

Impact of Baseflow on Fish Community in the Ungcheon Stream, Korea

  • Choi, Byungwoong;Oh, Woo Seok;Kim, Nam Shin;Cha, Jin Yeol;Lim, Chi Hong
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.235-246
    • /
    • 2021
  • This study investigated the impact of baseflow on fish community in the Ungcheon stream (16.5 km long) located downstream of the Boryeong Dam, Korea. Based on field monitoring, there were five dominant fish species in the Ungcheon Stream accounting for 75% of the total fish community: Zacco platypus, Zacco koreanus, Tridentiger brevispinis, Rhinogobius brunneus, and Pungtungia herzi. These five fish species were selected as target species. HydroGeoSphere (HGS) and River2D models were used for hydrologic and hydraulic simulations, respectively. A habitat suitability index model was used to simulate fish habitat. To assess the impact of baseflow, each representative discharge was examined with or without baseflow. The HGS model was used to calculate baseflow within the study reach. This baseflow was observed to increase gradually with longitudinal distance. Validation of the hydraulic model dem onstrated that computed water surface elevated when baseflow was included, which was in good agreement with measured data, as opposed to the result when baseflow was excluded. Composite suitability index distributions and weighted usable area in the study reach were presented for target species. Simulations indicated that the baseflow significantly increased habitat suitability for the entire fish community. These results demonstrate that there should be a substantial focus on the baseflow for physical habitat simulation.

Analysis of Baseflow Contribution based on Time-scales Using Various Baseflow Separation Methods (다양한 기저유출 분리 방법을 이용한 4대강 수계의 시간대별 (연·계절·월) 기저유출 기여도 분석)

  • Lee, Seung Chan;Kim, Hui Yeon;Kim, Hyo Jeong;Han, Jeong Ho;Kim, Seong Joon;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • The analysis of baseflow contribution is very significant in Korea because most rivers have high variability of streamflow due to the monsoon climate. Recently, the importance of such analysis is being more evident especially in terms of river management because of the changing pattern of rainfall and runoff resulted from climate change. Various baseflow separation methods have been developed to separate baseflow from streamflow. However, it is very difficult to identify which method is the most accurate way due to the lack of measured baseflow data. Moreover, it is inappropriate to analyze the annual baseflow contribution for Korean rivers because rainfall patterns varies significantly with the seasons. Thus, this study compared the baseflow contributions at various time-scales (annual, seasonal and monthly) for the 4 major river basins through BFI (baseflow index) and suggested baseflow contribution of each basin by the BFI ranges searched from different baseflow separation methods (e.g., BFLOW, HYSEP, PART, WHAT). Based on the comparison of baseflow contributions at the three time scales, this study showed that the baseflow contributions from the monthly and seasonal analysis are more reasonable than that from the annual analysis. Furthermore, this study proposes that defining BFI with its range is more proper than a specific value for a watershed, considering the difference of BFIs between various baseflow separation methods.

Dam Inflow Evaluation using Hydrograph Analysis (수문곡선 분리를 통한 댐 유입량 평가)

  • Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.95-105
    • /
    • 2018
  • Understanding the composition of the dam inflow can improve the efficiency of dam operation considering the seasonal characteristics. Hydrograph analysis is one of the methods to identify the characteristics of dam inflow. In addition, baseflow separation on the dam inflow can be affected by anthropogenic influences depending on dam locations. In this regard, the objectives of this study are 1) to analyze yearly and monthly baseflow contribution to the dam inflow and 2) to compare the baseflow contribution to the inflow in dams located upstream and downstream of the watershed. The result shows that the estimated baseflow index was smaller in the upstream dams compared to the downstream dams. Discharge from the upstream water infrastructure including dams and reservoirs can be a part of inflow into the downstream water infrastructure. Based on this scenario, the discharge regulated from the upstream dam could lead to overestimation of baseflow contribution to inflow into the downstream dam. We expect that the results from this study elucidate the role and function of dams and hence, contribute to the efficient operation of dams located in the upstream and the downstream of the watershed.

Regional estimation of baseflow index in Korea and analysis of baseflow effects according to urbanization (국내 하천 기저유출지표 산정 및 도시화에 따른 기저유출 영향 분석)

  • Kang, Hyeongsik;Hyun, Yun-Jung;Jun, Sang-Mook
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In this study, the baseflow indices in Nakdong river watershed and the whole country's river were calculated by using SWAT model and PART method. The annual averaged baseflow in the Nakdong river watershed was estimated at 40% - 44% of the total discharge rate, and it is found to be higher than 90% during the winter months of December and January. An analysis of the baseflow index from 317 gauge stations across the country revealed that the contribution of baseflow to the nation's stream flow rate stood at an annual average of 40%, ranging from less than 20% to over 80% by region. Also, the impact of the decreasing baseflow due to land use changes in 1975 and 2000 was analyzed in Keumhogang river watershed under the same weather conditions. The results revealed that the number of days under the standard instream flow increased by 19-24 days as a result of the increase in the urbanization rate.

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Analysis of Dam Inflow using Baseflow Separation (기저유출분리를 통한 댐 유입량 특성분석)

  • Seong, Yeon-Jeong;Bastola, Shiksha;Lee, Sanghyup;Kim, Byoungwoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.171-171
    • /
    • 2018
  • 댐 유입량의 구성을 이해하는 것은 직접유출과 기저유출의 특성에 따라 수자원확보, 물 공급, 관개용수, 수력발전, 생태계 서식지, 친수활동 등 계절별 댐 운영을 효율적으로 수행하는데 기여할 수 있다. 또한, 댐은 대부분 유역 상류에 위치해 있어 댐 유입유량에 있어 다른 수리구조물에 의한 영향이 상대적으로 작기 때문에 앞에서 제시한 인위적 영향을 제외한 기저유출분리를 수행 할 수 있다. 이와 관련하여 본 연구의 목적은 1)댐 유입량에 대한 연별, 월별 기저유출을 분석하고; 2) 유역 상 하류에 위치한 댐의 유입량에 대하여 기저유출 기여도를 비교하는 것이다. 두 개의 연계 댐에 대하여 인위적 영향이 적은 상류에 위치한 댐이 하류에 위치한 댐보다 Baseflow Index가 더 작은 결과를 보여주었다. 상류 수자원시설부터 인위적 방류는 하류의 댐 유입량의 Baseflow Index를 과다산정의 원인이 될 수 있다는 것으로 나타났다. 본 연구의 결과는 댐 유입량의 특성을 월별 연별로 분석함으로써 댐의 역할과 기능을 확대하고 효율적 상 하류 댐 연계운영에 기여할 것으로 기대한다.

  • PDF

Quantifying Contribution of Direct Runoff and Baseflow to Rivers in Han River System, South Korea (한강수계의 하천에 대한 직접유출과 기저유출의 기여도 정량화)

  • Hong, Jiyeong;Lim, Kyoung Jae;Shin, Yongchul;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.309-319
    • /
    • 2015
  • River characteristics in South Korea has been affected by seasonal climatic variability due to climate change and by remarkable land cover change due to rapid economic growth. In this regard, the roles of river management is getting more important to eco-system and human community in watersheds of South Korea. Understanding river characteristics including direct runoff and baseflow, the first step of river management, can give a significant contribution to sustainable river environment. Therefore, the objective of this study is to quantify the contributions of the direct runoff and baseflow to river streamflow. For this, we used the BFLOW and WHAT programs to conduct baseflow separation for 71 streamflow gauge stations in Han River system, South Korea. The results showed that baseflow index for 71 stations ranges from 0.42 to 0.78. Also, gauge stations which have baseflow index more than 0.5 occupied 76% of a total stations. However, baseflow index can be overestimated due to human impacts such as discharge from dams, reservoirs, and lakes. This study will be used as fundamental information to understand river characteristics in river management at the national level.

A Study on Relationship between Streamflow Variability and Baseflow Contribution in Nakdong River Basin (낙동강 수계에서의 하천유량 변동성과 기저유출 기여도의 관계 분석)

  • Han, Jeong Ho;Lim, Kyoung Jae;Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.27-38
    • /
    • 2016
  • More severe and frequent flood and drought have increased the attentions on the river management. In particular, baseflow is an important element among many streamflow characteristics because streamflow is mainly consisted of direct runoff and baseflow. In this regard, this study attempted to analyze the relationship between streamflow variability and baseflow contributions on Nakdong river basin. For this, two Streamflow Variability Indices (SVI) were used: Coefficient of Variation (CV) and Coefficient of Flow Regime (CFR). Furthermore, baselow separation was individually conducted by three methods (PART, WHAT and BFLOW), and based on this, Baseflow Index (BFI) was calculated. Also, we used the daily streamflow data retrieved from 27 gauge stations in Nakdong river basin for baseflow separation. The results showed that BFI calculated by three models ranges from 0.14 to 0.90 for 27 gauge stations. For SVI, BFI has much higher correlation with CV than with CFR. Also, the inversely proportional relationship between BFI and CV showed that higher baseflow contribution, less streamflow variability.

A Study on the Estimation of Base Flow Using Base Flow Separation in the Daichung Dam Basin (대청댐유역의 기저유출분리를 통한 기저유량 산정에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • This study estimates the baseflow using the separation of daily streamflow hydrograph. For the separation of hydrograph, we used standard method. This method was presented by Institute of Hydrology in 1980. For the estimation of baseflow, we estimated the parameters of model using the relation of the catchment properties and the baseflow index. The baseflow is estimated by the results of the separation of daily streamflow hydrograph and is estimated 20.0%∼39.4%. Baseflow rates is high for larger catchments but low for smaller catchments. As the results of this study, there is no relation between rainfall and baseflow rates.

  • PDF

Uncertainty Evaluation of Baseflow Separation Filter methods: A Case Study of the Urmia Lake Basin in Iran

  • Nezhad, Somayeh Moghimi;Jun, Changhyun;Parisouj, Peiman;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.135-135
    • /
    • 2022
  • In this study, we evaluated uncertainties in baseflow separation filter methods focusing on changes in recession constant (𝛼) values, which include Lynie & Holick (LH) algorithm, Chapman algorithm, Eckhardt filter, and EWMA filter. Here, we analyzed daily streamflow data at 14 stations in the Urmia Lake basin, Iran, from 2015 to 2019. The 𝛼 values were computed using three different approaches from calculating the slope of a recession curve by averaging the flow over all seasons, a correlation method, and a mean value of the ratio of Qt+1 to Qt. In addition to the 𝛼 values, the BFImax (maximum value of the baseflow index (BFI)) was determined for the Eckhardt filter through the backward filter method. As results, it indicates that the estimated baseflow is dependent upon the selection of filter methods, their parameters, and catchment characteristics at different stations. In particular, the EWMA filter showed the least changes in estimating the baseflow value by changing the 𝛼 value, and the Eckhardt filter and LH algorithm showed the highest sensitivity to this parameter at different stations.

  • PDF