• Title/Summary/Keyword: base station placement

Search Result 13, Processing Time 0.017 seconds

Femto-Caching File Placement Technique for Overlapped Helper Coverage Without User Location Information (사용자 위치정보를 사용하지 않는 헬퍼 간 중첩 커버리지 영역을 위한 펨토-캐싱 파일 분배 기술)

  • Shim, Jae-Nam;Min, Byoung-Yoon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.682-689
    • /
    • 2014
  • Due to explosive growth of mobile data traffic, many kind of techniques based on small cell is proposed as solution for phenomenon. However, those techniques essentially demands increase of backhaul capacity and causes performance degradation if not satisfied. Based on that, the approach applying the storage capacity in place of backhaul capacity, which is known as femto-caching, is proposed to reduce data downloading delay of users in system. In this paper, we expanded previous research by proposing file placement strategy with distribution of user position, which is more practical scenario. Simulation results verify that our proposed scheme has better performance gains mainly because when coverage of helpers are overlapped, users get more opportunity to connect various helpers which enables users to download a variety kind of files from helpers, not base station.

A Mesh Router Placement Scheme for Minimizing Interference in Indoor Wireless Mesh Networks (실내 무선 메쉬 네트워크에서의 간섭 최소화를 위한 메쉬 라우터 배치 기법)

  • Lee, Sang-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.421-426
    • /
    • 2010
  • Due to the ease of deployment and the extended coverage, wireless mesh networks (WMNs) are gaining popularity and research focus. For example, the routing protocols that enhance the throughput on the WMNs and the link quality measurement schemes are among the popular research topics. However, most of these works assume that the locations of the mesh routers are predetermined. Since the operators in an Indoor mesh network can determine the locations of the mesh routers by themselves, it is essential to the WMN performance for the mesh routers to be initially placed by considering the performance issues. In this paper, we propose a mesh router placement scheme based on genetic algorithms by considering the characteristics of WMNs such as interference and topology. There have been many related works that solve similar problems such as base station placement in cellular networks and gateway node selection in WMNs. However, none of them actually considers the interference to the mesh clients from non-associated mesh routers in determining the locations of the mesh routers. By simulations, we show that the proposed scheme improves the performance by 30-40% compared to the random selection scheme.

Hierarchical Cellular Network Design with Channel Allocation (채널할당을 고려한 다중계층 셀룰러 네트워크 설계)

  • Park, Hyun-Soo;Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.63-77
    • /
    • 2008
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. Hierarchical network design using genetic algorithm is the first three-tier (Macro, Micro, Pico) model. We increase the reality through applying to Electromagnetic Compatibility Constraints. Computational experiments on 72 problem instances which have $15{\sim}40$ candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers 90% of the demand.