• Title/Summary/Keyword: base rock

Search Result 264, Processing Time 0.021 seconds

A prediction of the rock mass rating of tunnelling area using artificial neural networks (인공신경망을 이용한 터널구간의 암반분류 예측)

  • Han, Myung-Sik;Yang, In-Jae;Kim, Kwang-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.

  • PDF

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

Determining of Ground Condition Criteria for Dam Reinforced RIM Grouting (댐체 강화 RIM부 그라우팅을 위한 지반상태 기준 결정)

  • Han, Kiseung;Lee, Donghyuk;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Dam slope RIM is a highly important contact interface where the main body and the base surface are connected. In general, when the grouting for the slope of the dam structure is designed, it is planned using limited data (drilling, geological map, etc.). This makes it very difficult to accurately consider the original ground characteristics of the slope RIM grouting target, In addition, when the grouting volume planned during the design is drilled and injected into the original ground where the waterstop is secured, there is a possibility that the original ground with the waterstop is disturbed and the effect of the waterstop is rather diminished. In order to overcome such problems, it is more suitable to first consider geological conditions and determine whether to perform optimal grouting on the original ground through on-site repair tests before performing RIM grouting. In this paper, to determine the grouting of the RIM unit, a pilot hole water pressure test was performed on the rock of the slope in the target section. The analysis shows grouting volume of 1 Lugeon or less, and the cement injection amount also shows the injection result of 1 kg/m or less. In this case, performing grouting is rather counterproductive. This result can be evaluated through a rock of which some degree of order of mass is secured, as it is a dam design standard of 1 Lugeon or less when analyzed, using the results of visual observation and geological map creation during slope cutting. Therefore, in conclusion, it is preferable to make the decision for using RIM grouting on the slope of the dam body structure, based on 1 Lugeon in a rock state, and the cement injection amount also at 1 kg/m.

Ore Minerals and Fluid Inclusions Study of the Kamkye Cu-Pb-Zn-Au-Ag Deposits, Repubulic of Korea (감계 동(銅)-연(鉛)-아연(亞鉛)-금(金)-은광상(銀鑛床) 광석광물(鑛石鑛物)과 유체포유물(流體包有物) 연구(硏究))

  • Lee, Hyun Koo;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 1995
  • The Kamkye Cu-Pb-Zn-Au-Ag deposits occur as quartz veins that filled fault-related fractures of NW system developed in the Cretaceous Gyeongsang basin. Three major stages of mineral deposition are recognized: (1) the stage I associated with wall rock alteration, such as sericite, chlorite, epidote and pyrite, (2) the early stage II of base-metal mineralization such as pyrite, hematite, and small amounts of sphalerite and chalcopyrite. and the middle to late stage II of Cu-As-Sb-Au-Ag-S mineralization, such as sphalerite, chalcopyrite, galena with tetrahedrite, tennantite, pearceite, Pb-Bi-Cu-S system, argentite and electrum. (3) the stage III of supergene mineralization, such as covellite, chalcocite and malachite. K-Ar dating of alteration sericite is a late Cretaceous ($74.0{\pm}1.6Ma$) and it may be associated with granitic activity of nearby biotite granite and quartz porphyry. Fluid inclusion data suggest a complex history of boiling, cooling and dilution of ore fluids. Stage II mineralization occurred at temperatures between 370 to $220^{\circ}C$ from fluids with salinities of 8.4 to 0.9 wt.% NaCl. Early stage II($320^{\circ}C$, 2.0 wt.% NaCl) may be boiled due to repeated fracturing which opened up the hydrothermal system to the land surface, and which resulted in a base-metal sulfide. Whilst the fractures were opened to the surface, mixing of middle-late stage II ore fluids with meteoric waters resulted in deposition of Cu-As-Sb-Au-Ag minerals from low temperature fluids(${\leq}290^{\circ}C$). Boiling of ore fluids may be occured at a pressure of 112 bar and a depth of 412 m. Equilibrium thermodynamic interpretation of sphalerite-tetraherite assemblages in middle stage II indicates that the ore-forming fluid had log fugacities of $S_2$ of -6.6~-9.4 atm.

  • PDF

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure (풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구)

  • Kim, Jeongsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

Study on the historical change of rocker style(2) -The styles of the Shaker rockers, the Wicker rockers and the Platform rockers- (흔들의자의 양식 변천 연구(2) -쉐이커rocker, 위커 rocker, 플랫폼 rocker 양식을 중심으로-)

  • Lim, Seung-Taeg;Chung, Woo-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.95-111
    • /
    • 2006
  • These series articles were written in order to understand rockers of today and to provide basic data of their designs and manufacture studying pattern changes in the West. In the first article of the series reports we already described the theoretical background of rockers and the Windsor and the Boston style among the American classic rockers from the eighteenth to the twentieth century. This article contained the characteristics of the styles of the Shaker rocker, the Wicker rocker, and the Platform rocker. The three periods associated with furnituremaking in the Shaker sect are; the Primitive Era, which lasted from 1790 to 1820; the Classical Era, from 1820 to 1860; and the Final Phase, from 1860 to 1935. The important skills the Shaker needed to make the Shaker rocker are woodturning joinery, seat braid weaving and steam bending for the slats. The Wicker rocker continues to be extremely popular furniture style as the wicker proved equally effective for translating the ornate vine-like motifs popular among Art Nouveau proponents. The Wicker rockers were developed for child's, gentleman's and lady's, and it represents the most diverse forms among the above mentioned styles. However the rocker skates were often clumsy and took up too much room, preventing the chair from being shoved close to the wall and out of the way. These problems were overcome by the Platform rocker. The most important innovation was the technical development of a stationary base, which allowed the chair to rock noiselessly, without skating along the floor. The Modernism of the modern furnitures in America and Europe were affected by the characteristics of the Shaker rocker, the Wicker rocker, and the Platform rocker.

  • PDF

Loci of Orebodies, the Bupyeong Silver Deposits (부평은광상(富平銀鑛床)의 광체배태장소(鑛體胚胎場所))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.97-106
    • /
    • 1987
  • The geology of the Bupyeong mine area is consisted of Precambrian Gyeonggi gneiss complex and Mesozoic igneous rocks; i.e., pyroclastic rocks, intrusive breccia, granite and felsic porphyries which were formed during a Jurassic to early Cretaceous resurgent caldera evolution. Granites are not observed on the surface and in the underground of the mine. Bupyeong silver deposits occur as stockworks of base metal sulfides- minor silver minerals-quartz - carbonate veinlets, hosted by pyroclastic rocks and intrusive breccia at the southwestern margin of the caldera. Silver occurs mainly as native silver, and other silver minerals, minor in quantity, are argentite, tetrahedrite-freibergite, pyrargyrite, polybasite, canfieldite and dyscrasite. The average grade of silver ore is about 180g/t Ag. Discrimination of silver ore from the country rocks depends largely on the chemical analyses of rock samples taken every two meters from tunnels, diamond-drilling cores and mining stopes, because silver minerals are hardly observed in the ore by crude eye, and silver orebodies do not properly coincide with the concentrated zone of base metal sulfides which were precipitated at the earlier stage than the stage of precipitation of native silver. General characteristics of the loci of the silver orebodies are as follows; (1) The host rocks of orebodies are pyroclastic rocks and intrusive breccia. (2) Many of the orebodies are distributed around Gyeonggi gneiss complex. Especially where the paleotopography of gneiss complex shows a gradual slope, the basal stratigraphic horizon of the pyroclastic rocks unconformably overlying the gneiss complex offered a favorable loci of high grade ore. (3) $N5^{\circ}W$ to $N15^{\circ}$ E-striking faults played an important role in the localization of the orebodies. (4) Conduits of intrusive breccia within the gneiss complex, through which the intrusive breccia intruded into the upper pyroclastic rocks, exist beneath most of the main orebodies. This suggests that the conduits of intrusive breccia served as channelways for the migration of ore fluids.

  • PDF

A Study on the Efficient Feature Vector Extraction for Music Information Retrieval System (음악 정보검색 시스템을 위한 효율적인 특징 벡터 추출에 관한 연구)

  • 윤원중;이강규;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.532-539
    • /
    • 2004
  • In this Paper, we propose a content-based music information retrieval (MIR) system base on the query-by-example (QBE) method. The proposed system is implemented to retrieve queried music from a dataset where 60 music samples were collected for each of the four genres in Classical, Hiphop. Jazz. and Reck. resulting in 240 music files in database. From each query music signal, the system extracts 60 dimensional feature vectors including spectral centroid. rolloff. flux base on STFT and also the LPC. MFCC and Beat information. and retrieves queried music from a trained database set using Euclidean distance measure. In order to choose optimum features from the 60 dimension feature vectors, SFS method is applied to draw 10 dimension optimum features and these are used for the Proposed system. From the experimental result. we can verify the superior performance of the proposed system that provides success rate of 84% in Hit Rate and 0.63 in MRR which means near 10% improvements over the previous methods. Additional experiments regarding system Performance to random query Patterns (or portions) and query lengths have been investigated and a serious instability problem of system Performance is Pointed out.

Hydrogeomorphological Characteristics and Landscape Change of Oegogae Wetland in Jirisan National Park (지리산 외고개습지의 수문지형특성과 경관변화)

  • YANG, Heakun;LEE, Haemi;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Oegogae wetland is sub-alpine wetland which is formed in piedmont area in Jirisan National Park. Apparently Oegogae wetland seems to be well-protected wetland. Most alpine wetlands are located in the summit area, but Oegogae wetland is located in piedmont area which is transitional zone between the steep slope and relatively flat valley bottom. Oegogae wetland is active in terms of sedimentation and exceeds 1m in depth. Penetration tests show that composing material is soft such as peat and organic-rich sediment. Basal rock of the basin is gneiss and gneissic schist in general, which is good for the formation of wetland because those rocks are easy to form low permeability layer. Baseflow from the wetland takes control of the most of stream flow during the wet season and this is especially true during the dry season. Precipitation during the wet season increases water content and base flow from the wetland.