• Title/Summary/Keyword: base resistance

Search Result 905, Processing Time 0.028 seconds

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

Independence of Latin America and the Role of Afro-Ibero America: Mainly with Cimarron's Resistance and Comuneros Revolution (라틴아메리카의 독립과 이베로-아프로-아메리카 공동체의 역할)

  • Cha, Kyung Mi
    • Cross-Cultural Studies
    • /
    • v.31
    • /
    • pp.155-175
    • /
    • 2013
  • Meantime there has been a tendency to keep silent about the role of Afro-Ibero America Diaspora which contributed to the spirit of independence and the realization of country foundation ideology in the official history of Latin America. In some countries, although the collective resistance of Afro-Ibero America Diaspora, which intended to establish a liberal and equal society resisting against slavery and colonization system, was the foundation of independence and the establishment of a new country, their contribution has been difficult to leave an official trace in Caucasian criollo-centered history system. Along with the development of Hcienda in 17th Century, black slaves' collective resistance was developed mainly with el Virreinato de la Nueva Granada, the center of the Independence movement of Brazil and South America. The black people who escaped resisting against slavery formed communities and developed organized activities through various politics and social activities. However, such communities were mostly dispersed or destroyed by the colonial power, and the collective resistance of Afro-Ibero America Diaspora lost life. On the other side, in case of Colombia, a community of escaped black slaves which was formed in the early 17th Century is solely remaining in Latin America, moreover, Afro-Ibero America Diaspora's struggle for liberty and equality became the foundation for Comuneros revolution and Independence movement in the late 18th Century. Comuneros revolution which occurred in 1781 awoke self-awareness of liberty and equality, and became an ideological base for independence movement based on revolutional republicanism and philosophy of enlightenment. It is considered that South America's independence movement lead by $Sim{\acute{o}}n$ Boívar was a history that could not have started without historical base of Afro-Ibero America Diaspora's resistance against colonization system. Therefore, this study intends to discuss the role and achievement of Afro-Ibero America Diaspora in the process of independence of Latin America mainly with Colombia, which is the center of Independence movement of South America. Through this process, this study intends to revaluate historical contribution of Afro-Ibero America which has been relatively neglected meanwhile in the process of independence and the establishment of country.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

Development of High Corrosion Resistant $Mo_2NiB_2$ Boride Base Cermets for Plastic Injection Molding Machine Parts

  • Hirata, Kourou;Iwanaga, Kengo;Yamasaki, Yuji;Takagi, Ken-ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.111-112
    • /
    • 2006
  • Injection molding of corrosive super engineering plastics and engineering plastics with various fillers is conducted under severe conditions and causes corrosion and wear problems. We have developed $Mo_2NiB_2$ boride base cermets, which have excellent corrosion-and wear-resistances, and tried to apply them into plastic molding machine parts. In this paper, the effects of V substitution for Cr on the mechanical properties, corrosion resistance and microstructure of Ni-5.0B-51.0Mo-(17.5-X)Cr-XV (mass%) model cermets were investigated. Both transverse rupture strength (TRS) and hardness increased monotonically with increasing V content and reached 2.94GPa and $87.2R_A$ at 10.0%V, respectively. The improvements of TRS and hardness were attributed to microstructural refinement.

  • PDF

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

An Experimental Study on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling (전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Choi, Mi-Jin;Cha, Dong-An;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2432-2437
    • /
    • 2007
  • The demand of high speed and miniaturization of electronic devices results in increased power dissipation requirement for thermal management. In this work, the effects of microchannel width, height and liquid flowrate on the cooling performances of microchannel waterblock are investigated experimentally. The microchannel waterblock considered ranged in width from 0.5 to 0.9 mm, with the channel height being nominally 1.7 to 9 times the width in each case. The experiments were conducted using water, over a liquid flow rate ranging from 0.2 to 2.0 lpm. The base temperature, thermal resistance and pressure drop increase with increasing of liquid flow rate. The measured thermal resistances ranged from 0.10 to 0.23 $^{\circ}C$/W for the channel 5.

  • PDF

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • 임우조;홍성희;윤병두
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.344-350
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

  • PDF

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • U-J Lim;S-H Hong;B-D Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.345-345
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.