• Title/Summary/Keyword: base isolation systems

Search Result 142, Processing Time 0.018 seconds

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

Design approach of high damping rubber bearing for seismic isolation

  • Tiong, Patrick L.Y.;Kelly, James M.;Or, Tan T.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.303-309
    • /
    • 2017
  • Structural control through seismic isolation using elastomeric rubber bearing, which is also known as High Damping Rubber Bearing (HDRB), has seen an increase in use to provide protective from earthquake, especially for new buildings in earthquake zones. Besides, HDRB has also been used in structural rehabilitation of older yet significant buildings, such as museums and palaces. However, the present design approach applied in normal practice has often resulted in dissimilar HDRB dimension requirement between structural designers and bearing manufacturers mainly due to ineffective communication. Therefore, in order to ease the design process, most HDRB manufacturers have come up with catalogs that list all necessary and relevant product lines specifically for structural engineers to choose from. In fact, these catalogs contain physical dimension, compression property, shear characteristic, and most importantly, the total rubber thickness. Nonetheless, other complicated issues, such as the relationship between target isolation period and displacement demand (which determines the total rubber thickness), are omitted due to cul-de-sac fixing of these values in the catalogs. As such, this paper presents a formula, which is derived and extended from the present design approach, in order to offer a simple guideline for engineers to estimate the required HDRB size. This improved design formula successfully minimizes the discrepancies stumbled upon among structural designers, builders, and rubber bearing manufacturers in terms of variation order issue at the designing stage because manufacturer of isolator is always the last to be appointed in most projects.

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Telescopic columns as a new base isolation system for vibration control of high-rise buildings

  • Hosseini, Mahmood;Farsangi, Ehsan Noroozinejad
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.853-867
    • /
    • 2012
  • In this paper, a new type of passive energy dissipating system similar to added damping and stiffness (ADAS) and triangular added damping and stiffness (TADAS) is proposed and implemented in the analytical model of a building with hybrid structural system in the structure's base which we call it; Telescopic column. The behavior and performance of a high rise R.C. structure equipped with this system is investigated and compared with conventional base isolation systems such as rubber isolator bearings and friction pendulum bearings. For this purpose a series of ground acceleration records of the San Fernando, Long Beach and Imperial Valley earthquakes are used as the disturbing ground motions in a series of numerical simulations. The nonlinear numerical modeling which includes both material and geometric nonlinearities were carried out by using SAP2000 program. Results show suitable behavior of structures equipped with telescopic columns in controlling the upper stories drifts and accelerations.

Study on the Structure-borne Sound Transmission of a Machine through Rubber Mounts (고무마운트를 통한 장비의 고체음 전달에 관한 연구)

  • Kim, Bong-Ki;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Joo;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.655-660
    • /
    • 2000
  • Machines on board a ship are mounted on decks and transmit its structure-borne sound to the deck through resilient mounts. To predict the ship noise generated by the structure-borne sound of the machine, It is necessary to estimate the vibration level of the base structure. In this paper, a simple dynamic model is considered for vibration isolation systems consisting of a source, an isolator, and a base structure. The high frequency mobilities of the simple base structure are reviewed and wave effects in the mount are discussed in relation to isolation performance.

  • PDF

Seismic Fragility Analysis of Base Isolated NPP Piping Systems (지진격리된 원전배관의 지진취약도 분석)

  • Jeon, Bub Gyu;Choi, Hyoung Suk;Hahm, Dae Gi;Kim, Nam Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.

Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

  • Zhou, Zhiguang;Wong, Jenna;Mahin, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1237-1251
    • /
    • 2016
  • Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.