• Title/Summary/Keyword: base and weld

Search Result 556, Processing Time 0.027 seconds

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

A Study on the Impact Toughness and Microstructure change for High Nitrogen TiN Steel Alloy with Welding Heat Input. (용접 입열량에 따른 고질소 TiN 강재의 용접부 충격인성 및 미세조직 변화에 관한 연구)

  • Gwon Sun Du;Lee Gwang Hak;Park Dong Hwan
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.123-124
    • /
    • 2004
  • This study was investigated on the impact toughness and microstructure of welded metal and heat affected zone for Hi Nitrogen TiN Steel. With welding procedures, welding heat input applied were 30, 79 and 264 kJ/cm. TiN steel has shown very small prior austenite grain size for all the welding heat input applied, which was considered to result from the effect of TiN particles. In case of single SAW and EGW welding, the dilution rate of base metal into the weld was not high, resulting that there were no significant effects of base metal chemical composition on the mechanical properties of welds. However, TSAW with double Ypreparation carried very high dilution rate so that TiN steel has impaired the toughness of weld metal because N content in the weld was increased through the dilution of base metal.

  • PDF

Wear Resistance Characteristics of Iron System MAG Weld Overlays with Chromium and Niobium Carbide Composite (Cr 및 Nb 복합탄화물에 의한 철계 MAG용접 오버fp이의 내마모 특성)

  • 김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.54-59
    • /
    • 2002
  • Overlays is a treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those frictions demanded far the bulk of the material. Welding, thermal spray, quenching, carburizing and nitration have been used as the surface treatment. Especially, weld overlay is a relatively thick layer of filler metal applied to a carbon or low-alloy steel base metal for the purpose of providing a wear resistant surface. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders($Cr_3C_2+Mn+Mo+NbC$) and solid wire(JIS-YGW11). Characteristics of hardness and wear resistance on overlays were analyzed by EDS, EPMA, XRD and microstructures. Carbide formations were $M(Cr, Fe)_7C_3$ and NbC phases. And carbide volume fraction, hardness and specific wear resistance of overlays were increased with increasing powder feed rate and decreasing wire fred rate. Hardness and wear resistance were almost proportioned to carbide volume fraction of overlay.

A study on surface fatigue crack behavior of SS400 weldment (SS400 용접부의 표면피로균열거동에 관한 연구)

  • 이용복;조남익;박강은
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists around welded joints, SS400 steel with thickness of 12mm, which has been generally used for structure members, was welded with submerged-arc butt type and machined for both surface. An initial surface defect of pit shape with the aspect ratio of 2 was made on the specimen. The initial defect was located at 5 different zones over the weldment : weld metal zone, boundary between weld metal and HAZ, HAZ, boundary between HAZ and base metal. Characteristics of surface fatigue crack propagation from the defect on each region under the same loading condition were investigated and compared.

  • PDF

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.54-58
    • /
    • 2015
  • A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

Evaluation of Ct-parameter for Weld Interface Crack Considering Material Plastic Behavior (재료의 소성 거동을 고려한 용접 계면균열의 Ct 매개변수)

  • Yun, Gi-Bong;Lee, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.676-684
    • /
    • 2000
  • In this study, behavior of $C_t$ which is a well-known fracture parameter characterizing creep crack growth rate, is investigated for weld interface cracks. Finite element analyses were per formed for a C(T) specimen under constant loading condition for elastic-plastic-creeping materials. In modeling C(T) geometry, an interface was employed along the crack plane which simulated the interface between weld and base metals. The $C_t$ versus time relations were obtained under various creep constant combinations and plastic constant combinations for weld and base metals, respectively. A unified $C_t$ versus time curve is obtained by normalizing $C_t$ with $C^*$ and t with $t_T$ for all the cases of material constant variations.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Evaluationof Growing Crack-Tip Singularity in A533B Steel by Image Processing Technique (화상처리법을 이용한 A533B강의 진전균열특이장 평가)

  • Pyo, Chang-Ryul;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 1997
  • This paper describes an experimental and numerical study on growing ductile crack-tip behaviors. The hybrid experimental and numerical method by means of a computer image processign technique, was applied to the analysis of both base metal and weld metal CT specimens. In the weld metal specimen, the initial crack-tip was placed in front of fusion line, and the crack orientation was perpendicular to it. Finite element analysis of crack growth behaviors in both base and weld matal specimens made of A533B Class 1 steel were also performed to examine the effects of weldment on near crack-tip fields. a series of experimental studies on crack-tip behaviors have clearly shown the qualitative effects of material properties, especially a hardening exponent. The experimental and numerical results have also shown that weldment does not affect displacement and strain fields near a crack-tip while a stress field is influenced by the difference between yield stresses of both base and weld metals.

Fatigue Crack Propagation Behavior for Electron Beam Welded Joint of SUS 321 (SUS 321 전자비임 용접부의 피로균열진전거동)

  • 김재훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.57-64
    • /
    • 1997
  • Fatigue crack propagation behaviors and life prediction for SUS 321 plate and its electron beam weld metal were investigated using compact tension specimens. The larger the stress ratio is, the faster the crack propagates, but the variation of crack propagation rate decreases. The effect of stress ratio is greater in the slow crack propagation area than in the faster one. The crack propagation rate of electron beam weld metal is faster than that of base metal because of hardening, weld defect and residual stress in welding area. The crack propagation rate of transverse weld metal has a lower than that of base metal due to the effect of residual stress, but in the time of passing through welding area, has a higher rate. The crack propagation rate using $\Delta$K$_{eff}$ can be well plotted regardless of stress ratio. The fatigue life prediction method of considering crack closure more exactly predicts fatigue life than conventional one. conventional one.e.

  • PDF