• Title/Summary/Keyword: basaltic breccia

Search Result 10, Processing Time 0.026 seconds

The Occurrence and Formation Mode of Basaltic Rocks in the Tertiary Janggi Basin, Janggi Area (제 3기 장기분지에 나타나는 현무암질암의 산상과 형성기구)

  • Kim, Choon-Sik;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2007
  • A basaltic tuff formation (Upper Basaltic Tuff of the Janggi Group) occurs in close association with basalt (Yeonil Basalt) at the Tertiary Janggi basin. The purpose of this paper is to describe the occurrence of the basaltic tuff and associated basalt and to determine their mode of formation. The basaltic rocks of the study area show few distinct lithofacies, all of which are originated from the interaction of basaltic magma with external water. The four lithofacies include (1) sideromelane shard hyaloclastite, (2) pillow breccia, (3) entablature-jointed basalt, and (4) in-situ breccia. The sideromelane shard hyaloclastite constitutes most of the Upper Basaltic Tuff and has a gradual contact with the pillow breccia. The pillow breccia consists of a poorly sorted mixture of isolated and broken pillows, and small basalt globules and fragments engulfed in a volcanic matrix of sideromelane shard hyaloclastite. The entablature-jointed basalt occurs as a small body within the hyaloclastite. It is characterized by irregularly-curved joints known as entablature. The in-situ breccia occurs as a marginal facies of entablature-jointed basalt, and its width varies from 10 to 30m. The result of this study indicates that the basaltic tuff and associated basalts of the study area were produced by the volcanic activity of same period and the basaltic tuff was formed by subaqueous eruption of basaltic lava followed by nonexplosive quench fragmentation.

Artificial Accelerated Weathering of Volcanic Rocks from Ulleungdo Island (인공풍화가속실험을 통한 울릉도에 분포하는 화산암의 풍화특성 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.499-510
    • /
    • 2015
  • Artificial accelerated weathering test evaluated rocks from near the circuit road of Ulleungdo island, approximately 120 km from east of the Korean Peninsula. The tests subjected rock specimens to conditions based on the climate of the island. The specimens (such as basaltic breccia, trachyte, volcanic breccia) were preliminarily classified using a TAS diagram (XRF data) and based on the constituent minerals (XRD data); they were further classified by weathering degree according to their absorption ratios. During the artificial accelerated weathering, the absorption ratio of most of the specimens increased, but the point-load strength did not decrease in most cases, except for the volcanic breccia. The greater initial absorption ratio of trachyte rock specimen in comparison with the other specimens led to a greater increase of its absorption ratio during the artificial accelerated weathering test. The volcanic breccia specimens showed the greatest increase of absorption ratio and the biggest reduction ratio of the point- load strength during the tests. These results could aid prediction of the weathering rate of rocks in Ulleungdo island subjected to weathering processes; trachyte which appears to accelerate with time, and volcanic breccia whose mechanical strength can largely decrease in a relative short period of time. Proper measures therefore appear necessary for the prevention of natural disaster such as rock fall and landslide around the circuit road.

K-Ar Age of the Keumseongsan Volcanic Rocks and Mineralization in the Southeastern Part of Euiseong, Gyeongsangbuk-Do, Republic of Korea (경북·의성 동남부에 분포하는 금성산 화산암류의 K-Ar연대와 그주변의 광화시기)

  • Lee, Hyun Koo;Kim, Sang Jung;Yun, Hyesu;Choi, Wyi Chan;Song, Young Su;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.445-454
    • /
    • 1993
  • The Keumseongsan caldera is composed of the Cretaceous sedimentary rocks of the Gyeonesang Supergroup, volcanic rocks of the Yucheon Group and basic dykes. The Keumseongsan caldera is formed by subsidence of volcanic rocks, and arc fault developed late. Also, synistral strike-slip fault ($N60^{\circ}W$) developed. Volcanic rocks belong to subalkaline rocks and calcalkaline magma series. First tuffaceous breccia erupted before 71.4 Ma and cavity of magma chamber caused subsidence, which formed arc fault. Basaltic lava erupted at 71.4 Ma and residual fluids containing Fe, As, Pb, Zn and Cu metal elements built the Ohto deposits, which are dated to be 70.5 Ma based on K-Ar age for sericite. Tuffaceous breccia and tuff erupted between 70.5 and 67 Ma. When volcanic eruption became weakened, cavity in site of magma chamber brought subsidence. Rhyolite intruded and erupted at 67 Ma, and intrusive rhyolite intruded according to arc faults, also. Hydrothermal fluids containing Fe, As, Pb, Zn, Cu, Sb, Bi, Au and Ag formed the Tohyeon deposits. K-Ar age for sericite from the Tohyeon mine gives 66.0 Ma. Results of field exploration, geochemical analyses of volcanic rocks support mineralization possibility by volcanism. Especially, age of volcanism and mineralization are well in coincidence with results of K-Ar age dating. By these results, Ohto Cu mineralization is regarded to be associcated with basaltic rocks, while Tohyeon Cu mineralization with rhyolitic rocks.

  • PDF

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Geomorphology and Volcaniclastic Deposits around Dokdo: Dokdo Caldera

  • Chun, Jong-Hwa;Cheong, Dae-Kyo;Park, Chan-Hong;Huh, Sik;Han, Sang-Joon
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.483-490
    • /
    • 2002
  • Detailed investigations on both submarine and subaerial volcaniclastic deposits around Dokdo were carried out to identify geomorphologic characteristics, stratigraphy, and associated depositional processes of Dokdo caldera. Dokdo volcano has a gently sloping summit (about 11km in diameter) and relatively steep slope (basal diameter is about 20-25 km) rising above sea level at about 2,270m. We found ragged, elliptical-form of Dokdo caldera with a diameter of about 2km estimated by Chirp (3-11 kHz) sub-bottom profile data and side scan sonar data for the central summit area of Dokdo volcano. We interpreted that the volcaniclastic deposits of Dokdo unconformably consist of the Seodo (west islet) and the Dongdo(east islet) formations based on internal structure, constituent mineral composition, and bedding morphology. The Seodo Formation mainly consisted of massive or inversely graded trachytic breccias (Unit S-I), overlain by fine-grained tuff (Unit S-II), which is probably supplied by mass-wasting processes resulting from Dokdo caldera collapse. The Dongdo Formation consists of alternated units of stratified lapilli tuff and inversely graded basaltic breccia (Unit D-I, Unit D-III, and Unit D-V), and massive to undulatory-bedded basaltic tuff breccias (Unit D-II and Unit D-IV) formed by a repetitive pyroclastic surge and reworking processes. Although, two islets of Dokdo are geographically near each other, they have different formations reflecting their different depositional processes and eruptive stages.

Evaluation of Volcanic Processes and Possible Eruption Types in Ulleung Island (울릉도에서의 화산과정과 발생 가능한 분출유형의 평가)

  • Hwang, Sang Koo;Jeong, Seong Wook;Ryu, Han Young;Son, Young Woo;Kwon, Tae Ho
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.715-727
    • /
    • 2020
  • Volcanostratigraphy in Ulleung Island is divided into 4 stratigraphic groups: Dodong Basaltic Rocks, Ulleung Group, Seonginbong Group and NariGroup. The main pyroclastics in them includes lapilli tuff intercalated within the Dodong Basaltic Rocks, lapilli tuff at the top of Sadong Breccia, Sataegam Tuff, Gombawi Welded Tuff, Bongrae Scoria Deposits, Maljandeung Tuff, Nari Scoria Deposits and Jugam Scoria Deposits. Analysing eruption types, The lapilli tuff in the Dodong Basaltic Rocks is derived from Surtseyan eruption, and the Bongrae, Nari and Jugam Scoria Deposits are caused by Strombolian eruptions or/and sub-Plinion eruptions, but the Sataegam Tuff and Maljandeung Tuff are derived from Plinian and phreatoplinian eruptions. Among them the large-scaled eruptions. In particular, the eruptions of Maljandeung were large enough to result in caldera collapse, and had falled out tephras to the eastern Korean peninsula but even Japan Islands. The magma with high potential to be still alive is judged to be trachyandesitic and phonolitic in composition. If the trachyandesitic magma explodes, it will probably result in a strombolian eruption and have a fairly low explosivity, but if the phonolitic magma explodes, it will probably result in a plinian eruption and have a much higher explosivity. If the eruption had a high explosivity, there is a possibility that it could easily be converted into a phreatoplinian eruption due to the influx of groundwater by the easy generation of fractures. These large-scaled eruptions could fall out tephras to the eastern Korean peninsula but even Japan Islands.

Petrology and Structural Geology of the Late Cretaceous Volcanic Rocks in the Northeastern Part of Yucheon Basin (유천분지(楡川盆地) 북동부(北東部) 백악기(白堊記) 화산암류(火山岩類)의 화산암석학(火山岩石學) 및 지질구조(地質構造))

  • Kim, Sang Wook;Lee, Young Gil
    • Economic and Environmental Geology
    • /
    • v.14 no.1
    • /
    • pp.35-49
    • /
    • 1981
  • The studied area is largely occupied by thick piles of the late Cretaceous volcanic rocks of the Yucheon group, which is northeastern border part of the vast volcanic region in the Yucheon basin. The Yucheon group overlies the Geoncheonri Formation and is intruded by granitic and dioritic stocks and dykes. The group can be devided into two parts; the lower is Jusasan andesitic rocks which was called as Jusasan Porphyrite Formation by Tadeiwa in 1929, and the upper is Unmunsa rhyolitic rocks. The volcanic pile consists mainly of various tuffs such as tuff breccia, lapilli tuff, coarse to fine tuff and tuffaceous sediments, and interlayered flows, which range from basaltic andesite to rhyolite in their lithology. The results of petrochemical and volcanostratigraphic studies on the Jusasan andesitic socks suggest that the volcanic rocks were derived from two cyclic evolutions of magmatic fractionation. Systematic study of 5226 joints from the area reveals two sets of steep joints striking $N20^{\circ}-40^{\circ}E$ and $N40^{\circ}-70^{\circ}W$, are dominant and coincide with the fault pattern developed in the area. Three defferent maximum principal stress axes were recognized from conjugate shear joints, which are trending east-west, north-northwest, and north-northeast.

  • PDF

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

[ $^{40}Ar/^{39}Ar$ ] Ages of the Tertiary Dike Swarm and Volcanic Rocks, SE Korea (한반도 남동부 제3기 암맥군과 화신암류의 $^{40}Ar/^{39}Ar$ 연대)

  • Kim Jong-Sun;Son Moon;Kim Jin-Seop;Kim Jeongmin
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.93-107
    • /
    • 2005
  • We determined $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarms and volcanic rocks distributed in the SE Korea where the most prevalent crustal-deformation and volcanism occurred during the period. In previous study, it was disclosed that the mafic dike swarms on both sides (east and west) of the Yeonil Tectonic Line (YTL) were originated from a same magma although they are consistently aligned with different intrusion directions of NS and NE, respectively. Ages of the mafic dike swarms of this study are $47.3\pm0.8Ma$ and $48.0\pm1.3Ma$, respectively and confirm such conclusion. These facts clarify that the YTL acted as a westernmost limit of the crustal deformation, especially clockwise crust-rotation, during the Miocene. Frequent occurrence of basic dikes indicate strongly that the southeastern part of the Korean Peninsula was under E-W extensional stress field at about 48 Ma, intimately related to the India-Asia collision and subsequent sudden change of the Pacific Plate motion. The ages of the uncommonly appearing intermediate and felsic dikes were determined as $55.9\pm1.5Ma$ and $53.0\pm1.0Ma$, respectively. Ages of the andesitic lava of the Hyodongri Volcanics, the dacitic lava of the Yongdongri Tuff, and dacitic rocks intruding and covering the Churyeong Breccia were determined as $24.0\pm0.5Ma,\;21.6\pm0.4Ma$, $21.8\pm0.1Ma,\;and\;22.0\pm0.5Ma$ respectively. The ages from the volcanics agrees well with the stratigraphy established by the latest field survey, which confirms that the $andesitic\~dacitic$ volcanism was followed by the basaltic volcanism during the Early Miocene.