• 제목/요약/키워드: basalt rocks

검색결과 139건 처리시간 0.026초

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代) (Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks)

  • 이현구;문희수;민경덕;김인수;윤혜수;이타야 테츠마루
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

포항 달전리 주상절리와 뇌성산 뇌록산지의 현무암 비교 분석 (Petrological Study on Basaltic Rocks of the Daljeon-ri Columnar Joint and the Noeseongsan Noerok Site in Pohang, Korea)

  • 김재환;유영완;정승호;김태형;문동혁;공달용
    • 암석학회지
    • /
    • 제27권4호
    • /
    • pp.185-194
    • /
    • 2018
  • 포항 달전리 주상절리(천연기념물 제415호)와 뇌성산 뇌록산지(천연기념물 제547호)는 중요한 지질 유산적 가치를 지니고 있기 때문에 두 지역의 현무암체에 대한 암석학적 연구를 수행하였다. 달전리 주상절리의 현무암은 감람석과 휘석이 반정으로 나타나며 침상의 사장석, 휘석, 불투명 광물 등이 기질을 이루는 반상조직을 보인다. 반면 뇌록산지의 현무암은 미정질의 기질에 사장석, 감람석, 휘석 반정을 함유하고 있으며, 사장석 반정이 특징적으로 나타난다. 또한, 전암대자율, XRD, XRF 분석 결과에서도 두 지역의 현무암은 서로 뚜렷이 구분되는 특성을 가진다. 화학분석 결과를 TAS와 Zr-Ti 다이어그램에 도시 결과, 전자는 대부분 알칼리 계열의 포노테프라이트(phonotephrite)의 조성을 가지며 판내부환경(within-plate basalt)에서 형성된 것으로 판단되며, 후자는 칼크-알칼리 계열의 현무암질 안산암 내지 안산암 조성을 가지며, 화산호(volcanic arc basalt)의 영역에 도시된다. 따라서 두 현무암은 기원 맨틀 물질에 차이가 있으며, 이러한 차이는 신생대 마이오세의 지체구조 환경 변화에 기인한 것으로 판단된다.

추가령(標哥嶺) 지구대(地構帶)의 지질구조(地質構造), 고지자기(古地磁氣) 및 암석학적(岩石學的) 연구(硏究) (Structural, Paleomagnetic and Petrological Studies of the Chugaryeong Rift Valley)

  • 김규한;김옥준;민경덕;이윤수
    • 자원환경지질
    • /
    • 제17권3호
    • /
    • pp.215-230
    • /
    • 1984
  • Petrological, paleomagnetic, geomorphological and structural studies on the southern part of, so called, Chugaryeong rift valley, have been carried out in order to clarify the nature of the rift valley. Three stages of volcanic activities characterized by Jijangbong acidic volcanic rocks and tholeiitic and andesitic basalt of Cretaceous age(?), and Jongok Quaternary olivine basalt occurred along the Dongducheon fault line. Jijangbong acidic volcanic rocks distributed in the central part of the studied area consist of rhyodacite, acidic tuff and tuff breccia, which are bounded by Dongsong fault on the east and Daegwangri fault on the west. The Jongok basalt differs from those of Ulrung and Jeju islands in mineralogy, chemical composition and differentiation. Jongok basalt distributed along the Hantan river dilineates the vesicles curved toward downstream direction and increment of numbers and thickness of lava flow toward upstream direction. These facts suggest that lava flowed from upstream side of the river. Rectangular drainage patterns also support the presence of the Dongducheon, Pocheon, Wangsukcheon and Kyonggang faults which were previously known. LANDSAT image, however, does not show any lineaments which could be counted as a graben or rift valley. Displacement of Precambrian quartzite and Jurassic Daedong supergroup along the southwestern extension of the Dongducheon fault shows the right lateral movement. The Paleomagnetic study of the tholeiitic and andesitic basalts from Baegeuri, Jangtanri and Tonghyeonri located at 2. 3km east, 0km east, and 1.5km west of Dongducheon fault respectively shows that their VGP(Virtual Geomagnetic Pole) being to intermediate geomagnetic field of short duration which suggests that they formed in almost same period. Mean VGP of Jongok basalt is located 82.4N and 80.6E. This is in good coincidence with worldwide VGP of Plio-Pleistocene indicating that Jongok basalt was extruded during Plio-Pleistocene epoch, and suggesting that the studied area has been tectonically stable since then. From the present study, the tectonic episode of the region is concluded as following three stages. 1. The 1st period is worked by the Daebo orogeny of Jurassic during which granodiorite was intruded in Precambrian basement. 2. The 2nd period is the time when right lateral strike-slip fault of NNE-SSW direction was formed probably during late Cretaceous to Paleogene and the Jijangbong acidic volcanic rocks and the older basalts were extruded. 3. The 3rd period is the time when the fault was rejuvenated during Pliocene or Pleistocene accompanied by the eruption of Jongok basalt. As a conclusion, geologic structure of the studied area is rather fault line valley than graben or rift valley, which is formed by differential erosion along the Dongducheon fault suggesting a continuation of the Sikhote-Alin fault. The volcanic rocks including the Jijangbong acidic rocks, tholeiitic-andesitic basalt and olivine basalt are associated with this fault line.

  • PDF

Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code

  • Mahmoud, K.A.;Sayyed, M.I.;Tashlykov, O.L.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1835-1841
    • /
    • 2019
  • The mass attenuation coefficient ${\mu}_m$ for eight rock samples having different chemical composition was simulated using the MCNP 5 code in energy range($0.002MeV{\leq}E{\leq}10MeV$). Moreover, the ${\mu}_m$ for the studied rock samples was computed theoretically using XCOM database. The comparison between simulated and computed data for all selected rock samples showed a good agreement with differences varied between 0.01 and 8%. The highest ${\mu}_m$ was found for basalt rocks M2 and M1 and the lowest one is reported for limestone rocks Dike. The simulated values of the ${\mu}_m$ then were used to calculate other important shielding parameters such as the mean free path, effective electron density and effective atomic number. The exposure buildup factor EBF was also computed for the selected rocks with the contribution of G-P fitting parameters and the highest EBF attended by the basalt sample Sill and varied between 1.022 and 744 in the energy range between ($0.015MeV{\leq}E{\leq}15MeV$) but the lowest EBF achieved by basalt sample M2 and varied between 1.017 and 491 in the same energy range.

모암이 토양미생물 다양성에 미치는 영향 (Effects of Parent Rocks on Soil Microbial Diversity)

  • 서장선;권장식;전길형
    • 한국토양비료학회지
    • /
    • 제36권3호
    • /
    • pp.127-133
    • /
    • 2003
  • 토양미생물의 생태적 특성을 평가하기 위해 화강암, 석회암 및 현무암을 모재로 한 12개의 토양통의 미생물적 특성을 조사하였다. 토양미생물상은 토양화학성과 유의한 상관관계를 보였는데, 특히 토양 pH는 형광성 슈도모나스와, 토양 EC는 방선균, 사상균, 중온성 Bacillus 및 호알카리성균과 정의 관계를 보였다. 포자형성균인 Bacillus는 화강암과 현무암에 비해 석회암토양에서 높은 균수를 보였으나, 그람음성균은 모암간에 비슷한 수준을 유지하였다. 화강암유래 토양에서는 Burkholderia, Pseudomonas, Ralstonia가, 석회암토양에서는 Pseudomonas, Burkholderia, Phyllobacterium가, 현무암토양에서는 Burkholderia속이 우점적으로 분포하고 있었다.

모암에 따른 삼림과 초지 토양의 완충능 및 비옥도에 관한 연구 (Studies on the Soil Buffer Action and Fertility of Soil Derived from the Different Parent Rocks)

  • 장남기;임영득
    • 아시안잔디학회지
    • /
    • 제9권1호
    • /
    • pp.81-89
    • /
    • 1995
  • The variations of the soil texture, $SiO_2$ /$Al_2$$O_3$ ratio, buffer action, exchangeable base, ex-changeable hydrogen, and mineral nutrients were investigated to estimate the grade of the soil fertility of the soil derived from the different parent rocks such as the granite in Kwangnung and the basalt in Chejudo. The results investigated were showed as follows : Basalt soils in Chejudo belong to sandy clay, light clay and sandy clay loam, while gramite soils in Kwangnung sandy loam. The $SiO_2$ /$AI_2$$O_3$ ratio of the grassland in Chejudo was 1.11 and that of the oak forest soils was 1.24, while granite soils in Kwangnung 1.54 and 1.46, respectively. The buffer actions of ba-salt soils against the N /10 HCI and $Ca(OH)_2$ were stronger than those of granite soils. The $SiO_2$/$Al_2$$O_3$ + $Fe_2$$O_3$ ratios of grassland and oak forest soils of basalt in Chejudo showed 1.10 and 1.24 respectively, while those of the grassland and oak forest of Kwangnung 1.44 and 1.33. The base exchange capacity of basalt soils which has higher value of exchangeable hydrogen was stronger than that of granite soils. But the base saturation of granite soils showed higher value than that of basalt soils. Water contents of basalt soils in Chejudo was lower than that of granite soils fo Kwangnung Basalt soils in Chejudo contain still more humus and total nitrogen than gran-ite soils in kwangnung, The amount of available nitrogen, available phosphorus and exchangeable calcium of granite soils were more than that of basalt soils, Therefore, estimating the soil fertility, granite soils in Kwangnung is higher than that of basalt soils in Chejudo.

  • PDF

Basalt 콘크리트 섬유보강 상판의 거동에 관한 기초적 연구 (The Fundamental Study on the Behavior of Deck Slab Reinforced Basalt Fiber)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Basalt originates from volcanic magma and flood volcanoes, a very hot fluid or semifluid material under the earth's crust, solidified in the open air. Basalt is a common term used for a variety of volcanic rocks, which are gray, dark in colour, formed from the molten lava after solidification. Recently, attention has been devoted to continuous basalt fibers (CBF) whose primary advantage consists in their low cost, good resistance to acids and solvents, and good thermal stability. In order to investigate reinforcement effect, this paper did FEM analysis with shell element. The result were as follows; BCF deck plate did elastic behavior to 450 kN, reinforcement effect of basalt fiber (BF) was less. But BCF's perpendicular deflection occurred little about 23 mm comparing with RC deck plate in load 627 kN. Stiffness was very improved by basalt fiber reinforcement.

제 3기 장기분지에 나타나는 현무암질암의 산상과 형성기구 (The Occurrence and Formation Mode of Basaltic Rocks in the Tertiary Janggi Basin, Janggi Area)

  • 김춘식;김진섭
    • 암석학회지
    • /
    • 제16권2호
    • /
    • pp.73-81
    • /
    • 2007
  • 경상북도 포항시 장기지역의 제3기 장기분지에는 제 3기 장기층군의 상부현무암질응회암이 넓게 분포하고 있으며, 그 가운데에 연일현무암이 단속적으로 산출되고 있다. 본 연구의 목적은 이들 현무암질암의 산상과 암상의 조사를 통하여 그 형성과정을 밝히는데 있다. 야외조사 결과 본역의 현무암질암은 다음과 같이 크게 4가지 특징적인 암상으로 구분된다: (1) sideromelane shard hyaloclastite, (2) pillow breccia, (3) entablature-jointed basalt, 그리고 (4) in situ breccia. 본역에서 관찰되는 현무암질암의 여러 특징에 의하면 장기지역의 장기분지에 분포하는 상부현무암질응회암은 hyaloclastite에 해당하며. 현무암질 용암의 수저분출 후 일어난 비폭발성 급랭 파쇄작용에 의해서 형성된 것으로 추론된다.

화성암 지역의 야외지질학습장 개발 및 적용 (Development and Application of Geological Field Study Sites in the Area of Igneous Rocks)

  • 김화성;함호식;이문원
    • 한국지구과학회지
    • /
    • 제34권3호
    • /
    • pp.274-285
    • /
    • 2013
  • 이 연구는 강원도 고성군 지역에 분포하는 뒤배재 화산체와 서낭바위를 대상으로 화성암 지역의 지형과 지질학습을 위한 야외지질학습장을 개발하는 것이다. 그리고 고등학교 1학년을 대상으로 그 교육적 효과를 알아보았다. 연구절차는 Orion의 모형에 근거하여 준비 단계, 야외학습 단계 및 정리 단계 순이며, 교육과정에 제시된 지질학습 요소를 바탕으로 야외지질학습장을 개발하였다. 야외학습 전에 학생들은 광물, 암석 등에 대하여 단순히 암기하고 있으며, 화강암과 현무암이 분포하는 지형의 형성과정에 대한 이해도는 매우 낮았다. 특히, 화강암과 현무암이 한 마그마에서 동시에 형성되는 것으로 이해하고 있다. 야외학습 후, 학생들은 광물, 암석 및 지질구조 등에 대한 단순한 지식은 학습이 잘 되었으나, 화강암과 현무암의 생성시기를 인식하지 못하여, 두 암석의 지형적 특성을 제대로 설명하지 못하였다. 이유는 중학교에서 화강암과 현무암의 생성과정에 대한 단순한 개념은 학습하였으나, 두 암석이 생성되는 지질시대 차이에 대한 의미는 학습하지 않았기 때문인 것으로 해석된다.