• 제목/요약/키워드: basalt fibers

검색결과 34건 처리시간 0.021초

Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study

  • Murad, Yasmin Z.;Abdel-Jabar, Haneen
    • Computers and Concrete
    • /
    • 제30권3호
    • /
    • pp.165-173
    • /
    • 2022
  • The effect of basalt and polypropylene fibers on the flexural behavior of reinforced concrete (RC) beams is investigated in this paper. The compressive and tensile behaviors of the basalt concrete and polypropylene concrete cylinders are also investigated. Eight beams and 28 cylinders were made with different percentages of basalt and polypropylene fibers. The dosages of fiber were selected as 0.6%, 1.3%, and 2.5% of the total cement weight. Each type of fiber was mixed solely with the concrete mix. Basalt and polypropylene fibers are modern and cheap materials that can be used to improve the structural behavior of RC members. This research is designed to find the optimum percentage of basalt and polypropylene fibers for enhancing the flexural behavior of RC beams. Test results showed that the addition of basalt and polypropylene fibers in any dosage (0.6%, 1.3%, and 2.5%) can increase the flexural strength and displacement ductility index of the beams where the maximum enhancement was measured with 1.3% fibers. The maximum increments in the flexural strength and the displacement ductility index were 30.39% and 260% for the basalt fiber case, while the maximum improvement for the polypropylene fibers case was 55.5% and 230% compared to the control specimen. Finite element (FE) models were then developed in ABAQUS to predict the numerical behaviour of the tested beams. The FE models were able to predict the experimental behaviour with reasonable accuracy. This research confirms the efficiency of basalt and polypropylene fibers in enhancing the flexural behavior of RC beams, and it also suggests the optimum dosage of fibers.

Basalt 섬유로 보강된 철근콘크리트 보의 휨 성능 고찰 (The Considerations on Flexural Performance of RC Beam Strengthened with Basalt Fibers)

  • 심종성;문도영;박성재;박경동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.599-604
    • /
    • 2002
  • Fibers have been used to improve tile flexural performance of reinforced concrete. Therefore many different kinds of fibers have been developed and tested to reinforcing concrete. Basalt fiber is one of the recently developed materials for this purpose. Basalt fiber produced from this basalt raw material has high initial strength and durability. But, the main advantages of the basalt fiber are resistance to high operating temperatures and lower modulus and chemical resistance compared to fiberglass. Also basalt fiber may be consumed as a potential replacement for expensive carbon fibers.

  • PDF

Effect of surface treatment on mechanical and micro-structural properties of basalt fiber reinforced mortars

  • Sukru Ozkan
    • Computers and Concrete
    • /
    • 제34권2호
    • /
    • pp.195-212
    • /
    • 2024
  • The use of basalt fibers in various types of fiber-reinforced mortars has been increasing. One of the factors that expands the use of basalt fibers is that it is a natural fiber and therefore the production costs are lower than fibers such as PVA fiber. Basalt fibers have some drawbacks such as reducing the workability of mortars in which basalt fibers are added due to their structure, and negatively affecting the mechanical properties when used above a certain proportional amount depending on the type of mixture. For this purpose, in this study, as a different application, the surface of basalt fibers with different lengths (6 and 12 mm) was treated with Triton X-100 surfactant, and these disadvantages were tried to be reduced. In the study, a two-step method was followed. In the first one, the effectiveness of adding untreated and treated basalt fiber at 1, 1.25, 1.5, 1.75 and 2% by weight to the mortar mixtures was determined by conducting flow spread and flow rate as fresh mortar characteristics. In the second one, microstructural characterization and mechanical tests were performed as hardened mortar properties. The results showed that the flow characteristics of basalt fiber reinforced mortars treated with surfactant improved compared to untreated basalt fiber reinforced mortars. In terms of mechanical properties, the addition of 2% treated basalt fiber by weight to the mixtures allowed to obtain %18, %12, and%48 higher values of compressive, flexural, and tensile strength values, respectively, compared to the same amount of untreated basalt fiber mixtures.

마이크로 파를 이용한 현무암 용융과 섬유 제조 (Microwave Melting of the Basalt Rock and Fiber Spinning)

  • 허유;김형진;양희원;전경진
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.78-85
    • /
    • 2009
  • High performance functional fibers are demanded increasingly in the modern industries, while the inorganic fibers such as carbon fibers, glass fibers, and metal fibers are representative among them in that they have high strength, consistent properties in a broad temperature change, etc.. This paper reports on the experimental trial to apply the microwave furnace on melting the natural basalt rock that spreads overall on the global surface and is supposed to be used as the raw material for the inorganic high performance fiber. Results showed that the new method to use the microwave as the heating source to melt the basalt rock was feasible. The crucible spinning could effectively applied for producing the basalt fibers up to 10 micrometer diameter, when the crushed basalt rocks were used. For drawing the molten basalt the drawing roller surface feature was a very important factor.

현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향 (Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites)

  • 김명석;박수진
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.219-224
    • /
    • 2015
  • 본 연구에서는 현무암섬유의 계면을 황산과 과산화수소로 처리하고 섬유 배향각을 $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$로 달리하여 현무암섬유 에폭시 강화 복합재료의 기계적 특성에 미치는 영향에 대해서 살펴보았다. 기계적 특성은 층간 전단강도(ILSS)와 파괴인성 요소 중 임계응력세기인자($K_{IC}$) 측정을 통하여 고찰하였으며, 섬유의 표면미세구조 변화와 복합재료의 파단면은 주사전자현미경(SEM)으로 관찰하였다. 또한 섬유표면에 계면처리의 여부를 확인하기 위하여 적외선 분광법(FTIR)과 X-선 광전자 분광법(XPS)을 분석하였다. 실험결과 계면처리한 섬유 표면의 -OH 기(hydroxyl)가 증가됨을 확인하였다. 계면처리한 후의 기계적 특성이 계면처리 전의 기계적 특성보다 약 ~100% 증가하였다. 이러한 결과는 표면처리에 의해 섬유와 에폭시 수지 매트릭스 사이의 계면결합력을 증가시킨 것으로 판단된다.

Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete

  • Ganesan, N.;Sahana, R.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.75-86
    • /
    • 2017
  • An experimental work was carried out to study the effect of hybrid fiber on the tension stiffening and cracking characteristics of geopolymer concrete (GPC). A total of 24 concentrically reinforced concrete specimens were cast and tested under uniaxial tension. The grade of concrete considered was M40. The variables mainly consist of the volume fraction of crimped steel fibers (0.5 and 1.0%) and basalt fibers (0.1, 0.2 and 0.3%). The load deformation response was recorded using LVDT's. At all the stages of loading after the first cracking, crack width and crack spacing were measured. The addition of fibers in hybrid form significantly improved the tension stiffening effect. In this study, the combination of 0.5% steel fiber and 0.2% basalt fiber gave a better comparison than the other combinations.

Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers

  • Mazloom, Moosa;Mirzamohammadi, Sajjad
    • Advances in materials Research
    • /
    • 제8권2호
    • /
    • pp.137-154
    • /
    • 2019
  • In this study, thermal effects on the mechanical properties of cement mortars with some types of fibers is investigated. The replaced fibers were made of polypropylene (PP), aramid, glass and basalt. In other words, the main goal of this paper is to study the effects of different fibers on the mechanical properties of cement mortars after subjecting to normal and sub-elevated temperatures. The experimental tests used for investigating these effects were compressive, splitting tensile, and four-point bending tests at 20, 100 and $300^{\circ}C$, respectively. Moreover, the microstructures of the specimens in different temperatures were investigated using scanning electron microscope (SEM). Based on the experimental results, the negative effects of sub-elevated temperatures on four-point bending tests were much more than the others. Moreover, using the fibers with higher melting points could not improve the qualities of the samples in sub-elevated temperatures.

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.689-707
    • /
    • 2023
  • Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

보강 섬유로서 현무암 섬유의 공학적 특성 (Engineering Property of Basalt Fiber as a Reinforcing Fiber)

  • 최정일;장유현;이재원;이방연
    • 한국건설순환자원학회논문집
    • /
    • 제3권1호
    • /
    • pp.84-89
    • /
    • 2015
  • 현무암섬유는 높은 인장강도와 콘크리트와 유사한 밀도를 갖기 때문에 콘크리트 보강 섬유로서 장점을 갖고 있다. 이 연구에서는 현무암섬유의 부착 특성과 섬유 배향각에 따른 현무암섬유의 인장 강도 특성을 조사하였다. 이를 위하여 현무암섬유와 폴리비닐알코올섬유에 대한 섬유 인발 실험을 수행하였고, 현무암, 폴리비닐알코올, 폴리에틸렌섬유에 대하여 섬유 배향각에 따른 인장 강도를 측정하였다. 실험 결과 현무암섬유의 화학적 부착, 마찰 부착, 미끌림 경화 계수는 폴리비닐알코올섬유와 비교하여 각각 1.88, 1.03, 0.24배로 나타났다. 현무암섬유의 배향각에 따른 강도 감소 계수는 폴리비닐알코올섬유의 9배, 폴리에틸렌섬유의 3배로 나타났다.

현무암 섬유 보강 콘크리트의 물리적 특성에 관한 실험적 연구 (Experimental Study on the Properties of Basalt Fiber Reinforced Concrete)

  • 김경원;한만엽
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.341-348
    • /
    • 1997
  • Fibers have been used to improve the tensile strength or toughness of concrete. Therefore many different kinds of fibers have been developed and tested to reinforcing concrete. Basalt fiber is one of the recently developed materials for this purpose. Basalt fibers have the advantage which is the fiber itself is a same kind of material as concrete. In this study, fiber length change, orientation of fiber, the strength properties of fiber reinforced concrete have been tested. The test result show that as the amount of fiber increases, 1) workability of concrete has been reduced significantly, 2) the length of fiber reduced down to less than 4mm, 3) orientation factors are between 0.248 and 0.350, 4) compressive strength and elastic modulus have been increased significantly, however, the other strength have not increased significantly.

  • PDF