• Title/Summary/Keyword: basal area

Search Result 498, Processing Time 0.025 seconds

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF

Current Regional Cultural Situation and Evaluation of Grain Characteristics of Korean Wheat. I. Survey of Production Practices in Korean Wheat Cultivar Growers by Region (지역별 국산밀 재배 현황 및 원맥 특성 평가. I. 국산밀 재배 농가의 지역별 재배 현황 조사)

  • Kang, Chon-Sik;Kim, Kyung-Hoon;Seo, Yong-Won;Woo, Sun-Hee;Heo, Moo-Ryong;Choo, Byung-Kil;Hyun, Jong-Nae;Kim, Kee-Jong;Park, Chul Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The cultivation situation of Korean wheat of 175 farmers in nationwide for two years, 2010/2011 and 2011/2012, was analyzed to obtain basic data for extension cultivated area and enhancing the self-sufficiency ratio of Korean wheat. Compared to the mean temperature and precipitation in the normal year, the mean temperature was lower before the heading stage and higher amount of precipitation after the heading stage in 2010/2011 and higher the mean temperature and lower amount of precipitation after the heading stage in 2011/2012. Average cultivation career and area were 7.7years and 2.4~3.3ha, Keumkang cv. was mainly cultivated for two years and Jokyung and Baekjoong cvs. were increased cultivation areas in southern part of Korea, Gyeongsangnam-do, Jeolllanambuk-do and Kwangju metropolitan city, including in 2011/2012. Most farmers (144) sown wheat seeds from late October to the beginning November with broadcasting method and the other famers were sown using the drill method. Average amount for basal fertilizer was 29.7 kg/10a with complex fertilizer mixed for wheat and barley cultivation, which was higher amount compared to recommended rate of fertilizer amount by rural development administration. Top dressing using nitrogen fertilizer was applied from in the late February to the beginning March. Heading date was the beginning May in 2011 and the late April in 2012, which the mean temperature from regeneration stage to tillering stage in 2011 was higher than that of 2012. Most farmers harvested wheat in mid-June and Pre-harvest sprouting and Fusarium head blight were occurred in 2011 due to the high amount precipitation during grain filling period.

Monitoring of Plant Community Structure Change for Four Years(2007~2010) after Riparian Ecological Restoration, Nakdonggang(River) (낙동강 수변 생태복원지 시공 후 4년간(2007~2010년) 식생구조 변화 모니터링)

  • Ki, Kyong-Seok;Kim, Jong-Yup
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.707-718
    • /
    • 2012
  • This study was conducted to monitor 4 years of changes in the vegetation structure starting from 2007 when restoration began and propose vegetation management ideas for the riparian ecological restoration areas in the purchased land around Nakdonggang(River). The study was conducted in each of 15 locations ($208,342m^2$) in the riparian ecological restoration areas in November 2007, September 2008, October 2009 and September 2010. The analysis results of the changes in planting species and population showed that, in the case of trees, Acer pseudo-sieboldianum, Quercus acutissima, Acer ginnala, Quercus aliena, Quercus variabilis indicated relatively little changes in their numbers and Quercus dentata, Cornus walteri, Morus alba, Styrax obassia, Sorbus alnifolia var. macrophylla indicated a 100% withering rate. Most shrubs withered due to the oppressive pressure of herbs and climbing plants. The planting density decreased over 4 years on average 28 plants/$100m^2$ to 20 plants/$100m^2$ to 16 plants/$100m^2$. Shortly after the restoration, The the amount of growth was reduced by restoration stress. however as time goes on after the restoration tended to stabilize. The changes in the basal area showed a decrease from $507.1cm^2/100m^2$ in 2007 right after restoration to $301.8cm^2/100m^2$ in 2008 and afterwards showed an increasing trend by going to $324.9cm^2/100m^2$ in 2009 and $372.7cm^2/100m^2$ in 2010. To improve the planting structure of the riparian ecological restoration area, the selection of tree species that have been considered for soil moisture and the differentiation of suitable planting structures that have been considered for local conditions were needed.

Distribution of Biomass and Production of Robinia pseudoacacia Plantation in Korea (아까시나무조림지(造林地)의 물질생산량(物質生産量)에 관(關)한 연구(研究))

  • Kim, Kap Duk;Kim, Tae Wook;Lee, Kyong Jae;Kim, Joon Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.68 no.1
    • /
    • pp.60-68
    • /
    • 1985
  • To study the comparison of the aboveground biomass of Robinia pseudoacacia L. of 8-, 13- and 20-year-old plantations, the experimental plot of $100m^2$ in size located in Youngin-gun were selected. Seven sample trees at different stand ages selected taking account of DBH distribution were felled and the diagram of oven-dry weight distribution of stem, branch and leaf for each 1m segment was constructed. The dry weight of each part of plots was estimated by the method of basal area ratio. If the estimations are extended to a hectare area stand, it contains 36.72, 69.28 and 118.67 tons of the aboveground standing crops in 8-, 13- and 20- year-old stand respectively. The net production was estimated to be as much as 12.56, 13.23 and 16.78 tons per hectare per year and the net assimilation ratio 3.66, 4.13 and 2.50 kg/kg/yr in 8-, 13- and 20-year-old stand respectively. And the efficiency of leaves to produce stem was 1.69, 2.10 and 0.96 kg/kg/yr in same order.

  • PDF

A Study on the Production Structure and Biomass Productivity of Quercus variabilis Natural Forest (굴참나무천연림(天然林)의 생산구조(生産構造) 및 물질생산력(物質生産力)에 관(關)한 연구(硏究))

  • Kim, Si Kyung;Jeong, Jwa Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.91-102
    • /
    • 1985
  • Growth and biomass production of natural stands of Quercus variabilis in relation to tree density were studied to obtain basic guide lines for future tending operation. Two natural stands of Quercus variabilis located at 900m (A stand: 6,600trees/ha, $15.84m^2/ha$, $\frac{19}{17-20}$) and 800m (B stand: 4,300trees/ha, $16.65m^2/ha$, $\frac{20}{17-21}$) elevation in Sancheong, Kyongnam Province were selected for the comparative study and following results were obtained through a sample plot method. After diameter of individual trees in the sample plots was measured, twelve average trees from each diameter class were cut felled to measure dry weight of $W_S$, $W_B$, $W_L$, $W_{Ba}$, and standing biomass and biomass production rates by a allometrior regressions related to $D^2H$. Vertical distribution of leaves along the stems indicated that photosynthesis was carried out 2.2m above the ground in Stand A and 1.2m in Stand B. Maximum photosynthesis was located 4.2m and 6.2m above the ground in Stand A and B, respectively. Leaf area index was 4.25ha/ha for Stand A, and 3.89ha/ha for Stand B. Above-ground standing biomass was 49.51 ton/ha for Stand A and 59.20 ton/ha and net annual production was 6.75 ton/ha/yr. for Stand A and 8.99 ton/ha/yr. for Stand B. The ratio of net annual production to standing biomass was 17.5% for Stand A and 16.7% for Stand B. Net assimilation rate was 2.75kg/kg/yr. for Stand A and 3.58kg/kg/yr. for Stand B. Stem wood production rate was 1.46kg/kg/yr. for Stand A and 2.09kg/kg/yr. for Stand B. Bark production rate was 0.60 kg/kg/yr. for Stand A and 0.34kg/kg/yr. for Stand B. Above data indicated that Stand B utilized growing spaces and sites more efficiently than Stand A. It is concluded chat productivity of natural stands of Quercus variabilis can be enhanced through optimization of basal areas and number of tree per hectare and that sound management of natural oak stands should be based on systematic sampling of the area for periodic productivity estimation.

  • PDF

Yield Response to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Nitrogen Nutrition Status of Rice Plant (벼 유수분화기 생장 및 질소영양상태에 따른 수량의 수비질소 반응)

  • Kim, Min-Ho;Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.571-583
    • /
    • 2006
  • To secure high yield and good quality of rice, plant growth and nitrogen (N) nutrition status should be taken into account for managing panicle N topdressing (PN). This research aimed at investigating the rice yield response to PN under different plant growth and N nutrition status that was conditioned by different rates of basal and tillering N fertilizer (BTN). Stepwise multiple regression (SMR) was used for the analysis of yield response to (i) BTN and PN, and (ii) shoot N content at PIS (BTNup) and shoot N uptake from PIS to harvest (PNup). Rice yield increased significantly as BTN and PN Increased, but there was no significant interaction between BTN and PN. Yield increased almost linearly with the increasing BTN and PN up to $10{\sim}12$ and $6{\sim}7\;kgN/10a$, and with the increasing BTNup and PNup up to $6{\sim}7$ and $5{\sim}6\;kgN/10a$, respectively. But yield increment tended to decrease above those levels. These declines resulted from the decreased ripened grain ratio and 1000 grain weight even though spikelet number per unit area increased more at above those N levels. Spikelet number per unit area had the linear relationships with the shoot N uptake until heading, and with yield. Like most yield response curves, yield response in this experiment followed the diminishing return function with BTNup, PNup, and plant N uptake from seeding to harvest. Regardless of the degree of BTNup and PNup, yield had a quadratic relationship ($R^{2}$>0.88) with whole shoot N accumulation until harvest, suggesting that the yield determination was closely related with the whole shoot N uptake until harvest regardless of the differences in seasonal shoot N uptake.

Effect of Dietary Cracked Whole Barley on the Carcass Characteristics and Meat Composition in Hanwoo Steers (마쇄보리 사료 급여가 비육후기 거세 한우의 도체 및 식육 특성에 미치는 효과)

  • Lee, Sang-Moo
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.367-375
    • /
    • 2011
  • This study was carried out to investigate the effects of the level of cracked whole barley on daily feed intake, daily body weight gain, carcass characteristics and meat composition of finishing Hanwoo steers (feeding from 24 months to 30 months of age). The dietary treatments were consisted of five types (C; normal concentrate as a basal diet, T1; 10% addition of cracked whole barley, T2; 20% addition of cracked whole barley, T3; 30% addition of cracked whole barley, T4; 40% addition of cracked whole barley). A total 30 Hanwoo steers (588.6${\pm}$11.8kg) were allocated to 5 feeding groups. The daily feed intake and daily body weight gain were high in the order of T2 > T3 >T4 > T1 > C. The back fat thickness and longissmus muscle area were highest in C and T1, respectively (P<0.05) than other treatments. The meat yield index decreased with increased back fat thickness. The marbling score and meat quality were highest in T1 (P<0.01, 0.05, respectively), but maturity, fat color and meat color were not significantly different among treatments. The crude fat was highest in T1 (17.59%), while in T4 (7.47%) it was lowest (P<0.05). The crude protein and crude ash were not significantly different among treatments. The energy value of cracked whole barley treatments (T1, T2, T3, T4) was higher than C (P<0.05). The contents of Ca, Cu, K, Mg, Mo, Na and Zn were higher in C than the other treatments (P<0.01), but Co was higher in T2 (P<0.01). The CIE $L^*$ value of whole cracked barley treatments (T1, T2, T3, T4) was higher than C, however there were not differences among the treatments. The CIE $a^*$ value was highest in T1(P<0.05) than others. The CIE $b^*$ value was highest in C and it was decreased with increased feeding of cracked whole barley. Based on the above results, T1 treatment compared to other treatments improved the carcass quality parameters like loin muscle area, marbling score, meat quality, and CIE $L^*$ value.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Studies on Heterostylism, Fertility, and Embryological Characteristics in Buckwheat. Fagopyrum esculentum (메밀의 이형예현상과 수정력 발생학적 특징에 관한 연구)

  • Man-Sang Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.129-142
    • /
    • 1986
  • Fifty-five local collections of buck wheat, Fagopyrum esculentum, were investigated their ratios of long-styled (LS) and short-styled (SS) flowers, fertility, meiosis of megaspore and microspore mother cell, female and male gametogenesis, and egg apparatus in accordance with the sowing seasons (spring, summer), altitudes (20m, 50-100m, 300m), and parent style types (L, S). Also they were embryologically investigated the fertility, fertilizing phenomenon and proembryogenesis by the legitimate and illegitimate pollination. There were no differences in the ratios of long-styled and short-5tyled flowers along with altitudes, but more irregularness was observed in plain area than that in the mountaineous or coastal area. LS versus SS ratios by sowing seasons were significantly separated into 1 : 1 in the summer sowing (P 0.1), but they were irregularly separated in the spring sowing. The segregating ratios by parent style types showed more number of short-styled flower in the spring sowing, and were statistically seperated into 1 : 1 in the summer sowing (P 0.25), regardless to parent style types. In the artificial legitimate union, the seed setting rates of the summer sowing (59-61%) were much higher than those of the spring sowing (about 30%), but in the artificial illegitimate union the seed setting rates were only fructified about 0.8-1.8% in the spring sowing. The seed setting rates in accordance with flowering stages were larger in turn early, middle, late, in the summer sowing. The grain number and grain weight per plant of short-styled flower were more than those of long-styled one regardless to style types. The 1,000 grain weight of long-styled flower was heavier than that of short-styled one in large grain, but it was lighter than that of short-styled flower in small or medium grain. The percentage of normal female and male gametogenesis in the summer sowing were higher than those in the spring sowing. The ovule was atropous and two polar nuclei were a synkarion before flowering. The pollens germinated at 30 minuts after pollination and the pollen tube grew continually and penetrated into micropyle at 1.5-2 hours and the two male nuclei fertilized with egg nucleus at 3 -5 hours after pollination. Flertilizing times in summer were shorter than in autumn. The fertilized egg was divided in a small apical cell toward the interior of the embryo sac and a large basal cell toward the micropyle cell at 15-24 hours after pollination, and division times in summer were shorter than in autumn. The proembryo began the embryogenesis at 7-8 days and formed itself into the perfect embryo at 15 days after pollination.

  • PDF