• Title/Summary/Keyword: basal N fertilizer

Search Result 109, Processing Time 0.034 seconds

Application Effect of the Controlled Release Fertilizer Applied on Seedling Tray at Seeding Time in Rice (벼 모판 파종동시처리 완효성비료 시용효과)

  • Won, Tae-Jin;Choi, Byoung-Rourl;Cho, Kwang-Rae;Lim, Gab-June;Chi, Jeong-Hyun;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.204-212
    • /
    • 2019
  • The optimal application rate of a controlled release fertilizer (CRF) on the growth, yield, and seeding time of rice grown on seedling trays was investigated. The experimental field was located at $37^{\circ}22^{\prime}10^{{\prime}{\prime}}N$ latitude and $127^{\circ}03^{\prime}85^{{\prime}{\prime}}E$ longitude in Hwaseong, Gyeonggi-do, Republic of Korea. The soil in the paddy field was a clay loam. The CRF used in the experiment contained $300g\;kg^{-1}$ of nitrogen, $60g\;kg^{-1}$ of phosphate, and $60g\;kg^{-1}$ of potassium, respectively. The CRF was applied at the rate of 0, 200, 300, 400, 500, and 600 grams on rice seedling tray compared with the field application based on soil testing (control), respectively. The CRF can be applied as single application(which can replace basal fertilizer application and two top dressing application) directly to the seedling tray, and showed the minimum release at the seedling period. Considering the plant growth, nitrogen use efficency and yield of rice, the optimal application rate of developed CRF was 500 g per seedling tray and the yield of rice at this application rate was $4.92{\sim}5.04Mg\;ha^{-1}$. The regression formula between the rice yield and application rates of CRF was as follows ; "$Y=0.0002{\chi}^2+0.0963{\chi}+411.6$($R^2$ : 0.9922) in 2010 and $Y=8E-6{\chi}^2+0.2723{\chi}+344.04$($R^2$:0.9864) in 2011, Y : Rice yield ($Mg\;ha^{-1}$), ${\chi}$ : Application rate (grams) of controlled release fertilizer". The optimum application rates of CRF per rice seedling tray by regression formula was 498 grams in 2010 and 513 grams in 2011.

Effect of Band Application of Slow Release Fertilizer on Rice Growth and Yield in Puddled-soil Drill Seeding (벼 무논골뿌림재배시 완효성비료의 측조 시비가 생육 및 수량에 미치는 영향)

  • Kim, Sang-Su;Choi, Min-Gyu;Park, Keon-Ho;Lee, Seon-Yong;Cho, Su-Yeon;Cho, Dong-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.68-76
    • /
    • 1996
  • To elucidate the optimum fertilizer level and application method for band application under puddled-soil drill seeding in Jeonbuk series of fluvio-marine alluvial soil at National Honam Agricultural Experiment Station in 1995, using Dongjinbyeo, slow releasing compound fertilizer of 100% and 80% to conventional application level was applied totally as basal fertilizer simultaneously with seeding under 3cm and 5cm depth from soil surface in a distance of 4cm from the seeded row. Plant height was taller and tiller number was higher in band application than conventional application but ratio of effective tiller was vice versa. Panicle number was more but ratio of effective tiller ratio was lower in 100% than 80% level of band application and they were higher in 3cm than 5cm depth from soil surface. Leaf area index and dry weight was higher in conventional application at early growth stage but was vice versa after maximum tillering stage, and they were higher in 3cm depth at early growth stage but 5cm depth after maximum tillering stage. NH$_4$-N in soil was higher in conventional application at 25 days after seeding but, thereafter was lower than band application and it was higher in 3cm than 5cm depth till 40 days after seeding but was versa, thereafter. Lodging degree was slightly higher in band application, 100% level and 5cm depth than in their counterparts. Panicle number and grain number per $m^2$ was lower in conventional application than 80% or 100% level of band application without significant difference between band application levels or application methods. Yield was higher at 80% level of band application under 3cm depth than conventional application, but no significantly different among other application methods. Therefore, 80% level of band application under 3cm depth of soil surface was more effective for puddled-soil drill seeding on the basis of the reduction of application efforts, better plant growth and higher yield in rice.

  • PDF

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.

Effects of different covering material on stable winter survival management with edible leaf in ramie (Boehmeria nivea L.).

  • Kim, Myeong Seok;An, Ho Sub;Kim, Gil Ja;Kim, Yong Soon;Choi, Jin Gyung;Kim, Dong Kwan;Park, Heung Gyu;Kim, Hyun Woo;Kim, Seong Il
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.226-226
    • /
    • 2017
  • This study was to evaluate methods to high quality food ramie rice cake, thereby increasing farm income. This study investigated the effects of different covering material on stable winter survival management with edible leaf in Ramie(Boehmeria nivea L.). The method of winter survival with covering material were conducted under three condition compose to Non covering, Rice straw cutting covered with 500kg.10a-1, Rice husks covered with 1,000kg.10a-1(covered 4~5 cm thickness in the soil surface). Method of application were standard application(N-P-K-Compost applied at 27-9-27-600kg.10a-1. Compost and fused phosphate applied at 100% of basal fertilizer in March 25. 20% of top dressing were four times application in March 25 - October 5. Planting year were March 15, 2011. Plants were spaced 60 cm apart in rows 25 cm apart with open cultivation. According to non covering < Rice husks covered with 1,000kg.10a-1 < Rice straw cutting covered with 500kg.10a-1 cultivation this order, aerial part as a result were plenty amount of growth. Sprout time and winter survival rates was uncovering control plot compared to 2 - 5 days quickly, 45-57% highly by rice husks and rice straw covering. Green leaf yields is untreated control plot (12,44 kg.10a-1) compared to rice husks covering 7% higher, and rice straw covering increased to 18% of the most.

  • PDF

Effects of Application Rates of Liquid Pig Manure on Rice Growth, Quality and Soil Properties (돈분액비의 시용수준이 벼 생육과 품질 및 토양에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.667-682
    • /
    • 2014
  • The effects of liquid pig manure (LM) on the yield and quality of rice as well as soil chemical properties were determined in the field of sandy loam soil under the different fertilizer management. Treatments consisted of 100%, 130% and 160% N application rates of liquid manure as calculated on the basis of the recommended rate of nitrogen (9 kg N/10a) for rice cultivation. Chemical fertilizer (CF) was used as control. Concentrations of T-N and T-P in paddy water were measured by 5-day intervals up to 20days after application. LM treatments significantly increased T-N concentrations in paddy water proportionally with increasing rates of LM (13.2 to 25.7 mg/L). Similarly Total-P content in paddy water was increased right after LM applications but was well below the quality standard of wastewater and manure. Plant height and tillers in 100% and 130% N LM treatments were lower than those in CF control. In the 160% LM treatment, however, plant height and numbers of tillers were higher than those in the CF control. Yields in 100% LM and 160% LM plots were decreased by 3 and 5%, respectively, as compared with 422 kg per 10a in the CF plot. Rice protein contents were similar between 100% LM and CF control (about 6.8%) but it was increased to 7.2% and 7.7% in 130% LM and 160% LM treatments, respectively. Toyo-taste value in the 100% LM treatment was higher than in CF control plot. The proportions of perfect grain of the brown rice were lower in 130% LM and 160% LM treatments than that in CF control. Soil organic matter content, heavy metal and exchangeable cations were highest in the 160% LM plot. Thus considering yield and quality of rice and heavy metals contents in soil, 130% N basal application of liquid manure can be recommended for rice cultivation in this experiment.

Research on Actual Conditions of Fertilizers Applications based on Farmers' Paddy Fields by Regions (수도재배(水稻栽培) 농가(農家)의 지역별(地域別) 시비실태(施肥實態) 조사연구(調査硏究))

  • Lee, C.S.;Hwang, S.W.;Park, J.K.;Kim, M.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.315-320
    • /
    • 1986
  • The investigation was conducted to find out amounts and ratios of N, P and K fertilizers applied on rice in 410 farmers' fields. The application ranges of N, P and K fertilizers, respectively, were 15.4-16.3, 7.6-8.0 and 8.2-8.5kg/10a for high yielding varieties, and 13.1-13.8, 7.0-7.1 and 6.4-7.7kg/10a for ordinary varieties. N fertilizer was applied in the ratio of 56% at basal dressing, 34% at tillering, 9% at panicle formation and 1% at heading stage. The amounts of soil amendment application were 179-192kg/10a for silicate, 1,031-1,360kg/10a for compost, 420-540kg/10a for rice straw, and 17.8-25.2 ton/10a for red earth.

  • PDF

Comparison of yield and its components in spring sown wheat and barley by path coefficient analysis

  • Choi, In-Bae;Kim, Hak-Sin;Hwang, Jae-Bok;Bae, Hui-Su;Ku, Bon-Il;Park, Hong-Kyu;Par, Tae-Seon;Lee, Geon-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.234-234
    • /
    • 2017
  • Recent abnormal weather, especially continued rainfall during sowing season causes difficulty in proper sowing of wheat and delayed sowing after November 15 is concerned about freezing damage during winter, resulting in reduction of wheat yield. To correspond government policy of crop sufficiency improvement and produce and supply raw wheat and barley steadily, expansion of cultivation area is necessary and spring sowing of wheat is required. To obtain basic information on the improvement of spring sown wheat and barley production, comparison and path coefficients analysis was conducted for yield and yield related components from autumn and spring sown wheat and barley. Path analyses were known as very useful in clarifying the effects of yield components on grain yield formation, which were not accurately reflected in simple correlation anaylses. Most cultivated 5 wheat and 9 barley cultivars were sown on October and February at Cheon-ju province according to standard sowing method. For the spring sowing of wheat and barley, the varieties having vernalization degree I~III are seeded in the mid of February and seeding rate is 200~250kg/ha which is increased by 25% than autumn sowing. N-fertilizer of 95 kg/ha and the same amount of P, K dressed in autumn are applied at once as basal fertilizer. The magnitude of direct effect in each yield components on yield was in sequence as follows. In autumn wheat, grain number per $spike{\geq}$ the number of spike per $m^2$>1000-grain weight and in spring wheat, grain number per $ spike{\geq}the$ number of spike per $m^2$> 1000-grain weight. In autumn naked barley, 1000-grain weight> the number of spike per $m^2$, grain number per spike and in spring barely, the number of spike per $m^2$> grain number per spike > 1000-grain weight. In autumn covered barley, grain number per spike>the number of spike per $m^2$ and in spring coverd barley, the number of spike per $m^2$> grain number per spike, 1000-grain weight. In autumn malt barley, the number of spike per $m^2$>1000-grain weight and in spring malt barley, the direct effects of three yield components were similar. According to the path analysis of yield components for spring sown wheat and barley, it was suggested that adequate number of spike per $m^2$ was most important factor for yield increase.

  • PDF

Effect of Organic Materials Use Recommendation System on Soil N Mineralization and Rice Productivity in Organic Paddy (유기자원 사용처방 기준 적용에 따른 토양 질소 무기화 및 유기 벼 생산성)

  • Lee, Cho-Rong;Lee, Sang-min;Hwang, Hyeon-Yeong;Kwon, Hyeok-Gyu;Jung, Jung A;An, Nan-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • This study was conducted to evaluate the field application of the developed recommendation system in organic rice (Oriza sativa L.) paddy and to investigate the mineral nitrogen content in soil and rice productivity. According to the developed system, hairy vetch (HV), rye+rapeseed oil cake (R+OC), rapeseed oil cake (OC) for only basal fertilization (OC-B), OC for split application (OC-S), pig manure compost (PMC), and chemical fertilizer (CHM) were applied to paddy soil at the rate of 107~133 kg N/ha. Results were followed, unhulled rice yield of OC-S (111%), OC-B (110), R+OC (106), HV (101), and PMC (96) were no significantly different with CHM (100). Also there was positive correlation (R2=0.803*) between unhulled rice yield and cumulative inorganic N in soil. For nitrogen use efficiency of rice, OC-B, OC-S, and R+OC were not significantly different with CHM. In conclusions, the developed organic materials use recommendation system was effective for organic rice productivity. It could be useful for organic farmer to apply the organic materials use recommendation system for rice.

Effect of Reduced Nitrogen Fertigation Rates on Growth and Yield of Tomato (질소 관비량 절감이 토마토 생육 및 수량에 미치는 효과)

  • Lee, In-Bog;Lim, Jae-Hyun;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.306-312
    • /
    • 2007
  • To investigate the effect of N fertigation on the growth, yield, and water and nitrogen use efficiencies during tomato cultivation, seedlings were transplanted in a sandy loam soil under plastic film house condition. 0, 88, 132, 176, $220\;kg\;ha^{-1}$ N rates, which correspond to 0 (NF0), 40 (NF40), 60 (NF60), 80 (NF80), 100% (NF100) N level of soil test-based N fertilization, were injected weekly through drip irrigation system for 15 weeks in N fertigation system, and the control (conventional N treatment) was installed for comparison. Herein, nitrogen was applied by top-dressing with 60% as a basal and 40% as additional fertilizer. There was little different in stem diameter growth among N fertigation treatments, but plant height and dry matter increased with increasing N fertigation rates as well as in N conventional treatment. Tomato yield was increased with increasing the number of marketable fruits in N fertigation treatments, and the fruit yield was maximized in NF 80 treatment ($176\;kg\;ha^{-1}$ N supply or $96.6\;mg\;L^{-1}$ N injection). Dry matter productivity and nitrogen uptake amount were significantly increased with increasing N fertigation rates. The ratio of fruits to the dry weight of whole plant was decreased with increasing N fertigation rates, but this ratio was $2.6{\sim}5.3%$ higher in N fertigation treatments than in the control. In addition, the ratios of nitrogen distributed toward fruits in N fertigation treatments were $3.7{\sim}21.7%$ higher than that of control. The apparent N recovery percentages showed significantly higher values as $71.8{\sim}102.3%$ in N fertigation treatments, compared to 45% in N conventional treatment. Water use efficiency was significantly increased by fertigation system with the maximum $361\;kg/ha\;cm^{-1}$ in NF 80, which is comparable to $324\;kg/ha\;cm^{-1}$ of the conventional treatment. Conclusively, N fertigation system was effective on increasing tomato productivity and nutrient efficiency as well as 20% reduction of N fertilization level.

Yield Response to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Nitrogen Nutrition Status of Rice Plant (벼 유수분화기 생장 및 질소영양상태에 따른 수량의 수비질소 반응)

  • Kim, Min-Ho;Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.571-583
    • /
    • 2006
  • To secure high yield and good quality of rice, plant growth and nitrogen (N) nutrition status should be taken into account for managing panicle N topdressing (PN). This research aimed at investigating the rice yield response to PN under different plant growth and N nutrition status that was conditioned by different rates of basal and tillering N fertilizer (BTN). Stepwise multiple regression (SMR) was used for the analysis of yield response to (i) BTN and PN, and (ii) shoot N content at PIS (BTNup) and shoot N uptake from PIS to harvest (PNup). Rice yield increased significantly as BTN and PN Increased, but there was no significant interaction between BTN and PN. Yield increased almost linearly with the increasing BTN and PN up to $10{\sim}12$ and $6{\sim}7\;kgN/10a$, and with the increasing BTNup and PNup up to $6{\sim}7$ and $5{\sim}6\;kgN/10a$, respectively. But yield increment tended to decrease above those levels. These declines resulted from the decreased ripened grain ratio and 1000 grain weight even though spikelet number per unit area increased more at above those N levels. Spikelet number per unit area had the linear relationships with the shoot N uptake until heading, and with yield. Like most yield response curves, yield response in this experiment followed the diminishing return function with BTNup, PNup, and plant N uptake from seeding to harvest. Regardless of the degree of BTNup and PNup, yield had a quadratic relationship ($R^{2}$>0.88) with whole shoot N accumulation until harvest, suggesting that the yield determination was closely related with the whole shoot N uptake until harvest regardless of the differences in seasonal shoot N uptake.