• Title/Summary/Keyword: barred galaxy

Search Result 33, Processing Time 0.027 seconds

A Comparative Study on Star Formation of Barred and Unbarred Disk Galaxies from SDSS-IV MaNGA IFU survey

  • Zee, Galaxy Woong-bae;Yoon, Suk-jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2017
  • We investigate star formation activities of ~400 barred and unbarred faced-on late-type galaxies from the SDSS-IV MaNGA (Mapping Nearby Galaxies at APO) IFU survey. We find the star formation activities in gas-poor, barred galaxies are considerably suppressed than gas-rich, barred galaxies, while there is no difference among unbarred galaxies regardless of their HI gas content. The gas-poor and barred galaxies show the steeper difference of gradient in metallicity and age with respect to the stellar mass than gas-rich or unbarred galaxies, in that their centre is more metal-rich and younger. The results suggest that, combined with the gas contents available, the bar structure plays a significant role in quenching star formation in a galaxy by transporting/mixing gas via gas inflow.

  • PDF

Barred Galaxies Are More Abundant in Interacting Clusters: Bar Formation by Cluster-Cluster Interactions

  • Yoon, Yongmin;Im, Myungshin;Lee, Seong-Kook;Lee, Gwang-Ho;Lim, Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.35.1-35.1
    • /
    • 2018
  • Bars are commonly found in disk galaxies. However, how bars form is yet unclear. There are two common pictures for the bar formation mechanism. Bars form through a physical process inherent in galaxies, or through and external process like galaxy-galaxy interaction. In this paper, we present the observational evidence that bars can form from another channel, namely a cluster-cluster interaction. We examined 105 galaxy clusters at 0.015

  • PDF

How Does the Bar Affect AGN-Driven Quenching within Late-type Galaxies

  • Jee, Woong-Bae;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.59.4-60
    • /
    • 2016
  • Recent galaxy simulations suggest several scenarios in which the inner structure of late-type galaxies (LTGs) is linked to global quenching. Exactly what mechanism governs the bulge quenching is, however, still under debate due to the lack of observational clues. In this study, we utilize a sample of ~1,300 LTGs in the local universe (0.02 < z < 0.2) from SDSS 7, and classify them into star-forming, AGN-hosting, and composite types and into barred and unbarred galaxies. We also examine each subgroup's specific star forming rate (sSFR), stellar mass and compactness using a data set matched with the advanced sSFR catalog by Chang et al. (2015). We find that while star-forming and composite galaxies show no detectable difference between barred and unbarred galaxies, barred AGNs have much lower sSFR than unbarred AGNs at given stellar mass and compactness, Such tendency is stronger for more massive and/or more concentrated galaxies. The results indicate that most AGN-driven quenching is triggered by growth of the bar structure, consistent with the previous simulations of bars.

  • PDF

A new approach to classify barred galaxies based on the potential map

  • Lee, Yun Hee;Park, Myeong-Gu;Ann, Hong Bae;Kim, Taehyun;Seo, Woo-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.33.3-33.3
    • /
    • 2019
  • Automatic, yet reliable methods to find and classify barred galaxies are going to be more important in the era of large galaxy surveys. Here, we introduce a new approach to classify barred galaxies by analyzing the butterfly pattern that Buta & Block (2001) reported as a bar signature on the potential map. We make it easy to find the pattern by moving the ratio map from a Cartesian coordinate to a polar coordinate. Our volume-limited sample consists of 1698 spiral galaxies brighter than Mr = -15.2 with z < 0.01 from the Sloan Digital Sky Survey/DR7 visually classified by Ann et al. (2015). We compared the results of the classification obtained by four different methods: visual inspection, ellipse fitting, Fourier analysis, and our new method. We obtain, for the same sample, different bar fractions of 63%, 48%, 36%, and 56% by visual inspection, ellipse fitting, Fourier analysis, and our new approach, respectively. Although automatic classifications detect visually determined, strongly barred galaxies with the concordance of 74% to 86%, automatically selected barred galaxies contain different amount of weak bars. We find a different dependence of bar fraction on the Hubble type for strong and weak bars: SBs are preponderant in early-type spirals, whereas SABs are in late-type spirals. Moreover, the ellipse fitting method often misses strongly barred galaxies in the bulge-dominated galaxies. These explain why previous works showed the contradictory dependence of the bar fraction on the host galaxy properties. Our new method has the highest agreement with visual inspection in terms of the individual classification and the overall bar fraction. In addition, we find another signature on the ratio map to classify barred galaxies into new two classes that are probably related to the age of the bar.

  • PDF

THE LATE TYPE SPIRAL GALAXY NGC 7793. I. ABUNDANCES OF HII REGIONS

  • Chun, Mun-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 1983
  • Four HII regions of the Sd galaxy NGC 7793 were observed using AAT/IPCS. From these spectra we determined abundances of the elements using observed emission lines and electron temperatures. The calculated abundances show that this galaxy does not show any significant radial abundance gradient. The mean oxygen abundance is very much like the Orion nebulae and the nitrogen abundance is similar to the late type barred spiral galaxy NGC 1313.

  • PDF

Cosmic Evolution of Disk Galaxies seen through Bars

  • Kim, Taehyun;Sheth, Kartik;Athanassoula, Lia;Bosma, Albert
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.31.3-31.3
    • /
    • 2017
  • The presence of a bar in disk galaxies indicates that galaxies reached their dynamical maturity, and secular evolution has started to play key roles in the evolution of disk galaxies. Numerical simulations predicted that as a barred galaxy evolves, the bar becomes longer by capturing its immediate neighbor disk stars. We test the hypothesis by exploring bar lengths and measuring the light deficit around the bar at various redshift. Supplementing already classified barred galaxies in later type disk galaxies ($$T{\geq_-}2$$, Sheth et al. 2008), we classify barred galaxies among earlier type disk galaxies (T<2) up to z~0.8 using F814W images from the Cosmic Evolution Survey (COSMOS). We estimate the length of bars analytically for ~400 galaxies, and find that there is a slight decrease in bar length with redshift. We also find that longer bars show more prominent light deficit around the bar and this trend is stronger for nearby galaxies. Our results are consistent with the predictions from numerical simulations, and imply that the bar induced secular evolution is already in place since z~0.8. 

  • PDF

SPH SIMULATIONS OF BARRED GALAXIES: DYNAMICAL EVOLUTION OF GASEOUS DISK

  • ANN HONG BAE;LEE HVUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2000
  • We have performed extensive simulations of response of gaseous disk in barred galaxies using SPH method. The gravitational potential is assumed to be generated by disk, bulge, halo, and bar. The mass of gaseous disk in SPH simulation is assumed to be negligible compared to the stellar and dark mass component, and the gravitational potential generated by other components is fixed in time. The self-gravity of the gas is not considered in most simulations, but we have made a small set of simulations including the self-gravity of the gas. Non-circular component of velocity generated by the rotating, non-axisymmetric potential causes many interesting features. In most cases, there is a strong tendency of concentration of gas toward the central parts of the galaxy. The morphology of the gas becomes quite complex, but the general behavior can be understood in terms of simple linear approximations: the locations and number of Lindblad resonances play critical role in determining the general distribution of the gas. We present our results in the form of 'atlas' of artificial galaxies. We also make a brief comment on the observational implications of our calculations. Since the gaseous component show interesting features while the stellar component behaves more smoothly, high resolution mapping using molecular emission line for barred galaxies would be desirable.

  • PDF