• Title/Summary/Keyword: barometric efficiency

Search Result 5, Processing Time 0.016 seconds

Barometric Efficiency study for the aquifer characteristics of Taegu region (Barometric Efficiency(B.E) 계산결과에 의한 대구지역 대수층(帶水層) 특성연구)

  • 성익환
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.58-69
    • /
    • 1992
  • Change in atmospheric pressure produce sizable fluctuafions in wells penetrafing confined aquifers. The relationship is inverse; that is, increases in atmospheric pressure produce decreases in water levels, and conversely. When atmospheric pressure changes are expressed in terms of a column of water, the raflo of water level change to pressure change expresses the barometric efficiency of an aquifer. In the study area, aquifers are developed in the fractures, joints, bedding planes and occasionally in solufion cavities of marl interbeds. The barometric efficiency of the aquifer varies from 8 to 90%, indicating that Confined, Unconfined and Semi-Confined condifions exist locally. The barometric efficiency is characteristic of the aquifer itself and observed in the field is inversely proportional to specific storage or the storage coefficient. It is remalned in question to derive the relationship between B.E. and S.

  • PDF

Aquifer Characterization in Cheon-an area by using long-term groundwater-level monitoring data

  • 원이정;김형수;구민호;김덕근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.565-569
    • /
    • 2003
  • One-year-long groundwater-level data have been collected from 18 wells in Cheon-an area. The result of barometric efficiency, autocorrelation, cross-correlation and statistical distribution evaluated from the measurement data shows that groundwater-level measurements from observation wells are the principal source of information about aquifer characteristics. Data from WA-2 has high barometric efficiency as well as steady decreasing auto-correlation coefficient, which means nonleaky confined aquifer, Most aquifers in this study show the unconfined properties so that barometric efficiencies are mostly low and the coefficients of cross-correlation between groundwater-level and precipitation are commonly high. This study showed that the long-term groundwater-level monitoring data without artificial stress such as pumping would give accurate information about aquifer characteristics.

  • PDF

Analysis of Monitoring Data Obtained from Three Boreholes in Haengbok (Sejong) City for Geothermal Resources Develoment (지열자원 이용을 위한 행정중심복합도시내 3개 지하수공 모니터링 해석)

  • Lee, Chol-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.445-448
    • /
    • 2007
  • Three boreholes (BE-1, BE-2 and BE-3) were drilled for geothermal resources development in Haengbok (Sejong) city. Monitoring of temperature, electric conductivity (EC) and piezometric head were carried out at each borehole. Temperatures were measured at 10 m depth, it ranges from 13.22$^{\cdot}C$ to 14.4$^{\cdot}C$. EC of BE-1 and BE-3 declined with time because groundwater flowed in boreholes. Barometric efficiency was analysed by piezometric head of groundwater and atmospheric pressure, it ranges from 44.8% to 71.5%. These parameters can be used for a geothermal modeling.

  • PDF

Groundwater Systems in Seoul Area : Analysis of Hydraulic Properties (서울지역 지하수 시스템 조사 : 수리적 특성 분석)

  • 김윤영;이강근;성익환
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.51-73
    • /
    • 1998
  • Hydrogeological systems in a metrnpolitan area can be understood by analyzing the groundwater disturbing factors such as constructions and land applications, the groundwater usage for domestic and industrial purposes, and the groundwater pumpage to lower the groundwater level for the structural safety of subway and underground facilities. This study is part of the study performed to understand the groundwater system in the Seoul area and it is focusing on the hydraulic properties. Groundwater well inventory, barometric efficiency measurements, pumping and slug tests, and long-term groundwater monitoring have been perfonrmed during the last 2 years. The relations between Han River and the groundwater around the river also have been observed. These observations and test data, together with the information on soil distribution, geology, and logging data are used to construct a database and GIS(Geographic Information System) presentation system using ARC/INFO. Barometric efficiencies appeared to have no special trends associated with well depths, which maeans that the degree of confinement of the crystaline rock aquifer of the Seoul area is distributed locally depending on the developrnent of fractures. Hydraulic conductivities exponentialiy decrease with well depth. The stage of Han River fluctuates according to the tidal movement of nearby seawater but the tidal effects attenuate due to the underwater dams. Groundwater levels in the Seoul area seem to have declined for the last two years,but it is not certain that the declination represents the long-term trend.

  • PDF

The Monitoring System for Location of Workers Inside a Thermal Power Plant Boiler (화력 발전기 보일러 내부 작업자 위치 모니터링 시스템 개발)

  • Song K.;Yun, C.N.;Shin, Y.H.;Shin, J.H.;Han, S.H.;Jang, D.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.71-78
    • /
    • 2021
  • There are regularly planned overhaul periods in thermal power plants, which involve the maintenance of the boiler of the power plants. However, thermal power plants workers are always exposed to risk during overhaul periods owing to the narrow space and significant dust inside the boiler. Therefore, it is essential to develop a safety monitoring system that is suitable for operating in this type of environment. In this study, we developed not only a worker three-dimensional (3D)-location monitoring system that can monitor and record the entry/exit of workers, their 3D-location, and fall accidents but also a method to secure the working environment and operation efficiency. This system comprises of a worker tag, which was equipped with an inertial measurement unit, a barometric pressure sensor, and a Bluetooth low energy (BLE), and the tags were given to each worker. In addition, the location of workers inside the boiler was measured using a pedestrian dead reckoning (PDR) method and BLE beacons. The location data of the workers tag were transmitted to the integrated database (DB) server through a gateway, and to the administrator monitoring system. The performance of the system was demonstrated inside an actual thermal power plant boiler, and the accuracy and reliability of the system were verified through a number of repeated tests. These results provide insights on designing a new system for monitoring enclosed spaces.