• Title/Summary/Keyword: bang-bang control

Search Result 1,150, Processing Time 0.025 seconds

A steering control method for wheel-driven mobile robot (휠구동방식의 자유이동로봇을 위한 조향제어방법)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.787-792
    • /
    • 1991
  • This paper proposes a steering control algorithm for non-holonomic mobile robots. The steering control algorithm is essential to navigate autonomous vehicles which employ comination of the dead reckoning and absolute sensor system such as a machine vison for detecting landmarks in order to estimate the current location of the mobile robot. The proposed algorithm is based on the minimum time BANG-BANG controller and curvature-continuity curve design method. In the BANG-BANG control scheme we introduce velocity/acceleration limiter to avoid any slippage of driving wheels. The proposed scheme is robot-independent and hence can be applied to various kinds of mobile robot or vehicles. To show the effectness of the proposed control algorithm, a series of computer simulations were conducted for two-wheel driven mobile robot.

  • PDF

Saturated Sliding Mode Control of SDOF System under Earthquake Leadings (지진을 받는 단자유도 진동계의 포화 슬라이딩 모드 제어)

  • 민경원;이상현;이영철;이승준;박민규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.477-484
    • /
    • 2003
  • Recently, sliding mode control(SMC) method has been investigated for control of building structures under earthquake loadings. SMC keeps responses of a structure in sliding surface while the structure is stable. This control method uses both linear controller and nonlinear controller such as bang-bang controller. This paper presents vibration control of a structure using saturated sliding mode controller, whose maximum conrtol force is limited. The effectiveness of SMC method with controler saturation is investigated based on two performance evaluation criteria: root mean square(RMS) and maximum values of floor drifts and accelerations. Simulation results indicate that SMC method is effective in reduction of displacement and acceleration utilizing the saturated controller's capacity efficiently.

  • PDF

Time-Optimal Control of Xenon-Induced Axial Power Oscillations in Pressurized Water Reactor (가사경수형 원자로에서의 제논 영향으로 인한 축방향 출력진동 시간최적제어)

  • Won-Hyo Yoon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.3
    • /
    • pp.91-99
    • /
    • 1984
  • Time-optimal control for dmping a one-dimensional xenon-induced spatial power oscillations in pressurized water reactor is studied. Linearized system equations describing the spatial xenon oscillations have been derived based on lambda mode analysis. Optimal control strategies, eventually bang-bang controls, have been drawn applying Pontryagins Minimum Principle, subject to a band constraint on available contros strength. Validity of the linearized system equations and optimal control strategies derived has been demonstrated through conputer simulations which incorporate the finite difference method for one dimensional axial geometry, for the soulution of the two-group neutron diffusion equations. The results obtained through computer simulations show that xenon-induced transients can be suppressed successfully with bang-bang control.

  • PDF

Reduction of seismic pounding effects of base-isolated RC highway bridges using MR damper

  • Sheikh, M.N.;Xiong, J.;Li, W.H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.791-803
    • /
    • 2012
  • Significant structural damages due to pounding between adjacent superstructures of multi-span reinforced concrete (RC) highway bridges have been observed in past earthquakes. Different methods have been proposed in the literature to mitigate the adverse seismic pounding effects. This paper presents an analytical investigation on the use of magnetorheological (MR) dampers in reducing seismic pounding effects of base-isolated multi-span RC highway bridges. It has been observed that MR damper can effectively reduce the seismic pounding effect. Three control strategies (passive off, passive on, and bang bang control) of MR damper have been investigated. Although all the control strategies are found to be effective, bang bang control has been observed to be the most effective.

Sliding Mode Control with Target Variation Rate of Lyapunov Function for Seismic-Excited Structures (Lyapunov 함수의 목표 변화율을 이용한 가진된 건물의 슬라이딩 모드 제어)

  • 이상현;정진욱;민경원;강경수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • This paper presents sliding mode control(SMC) method using target variation rate of Lyapunov Function. SMC keeps the response of structure in sliding surface where structure is stable. It can design both linear controller and bang-bang controller. Linear control of previous research, however, can not make most of the performance of controller, because it is designed to satisfy the condition that the variation rate of Lyapunov function is minus. Also, in case of bang-bang controller, unnecessary large control force is generated. Presented method can utilize the capacity of controller efficiently by prescribing the target variation rate of Lyapunov function. Numerical simulation results indicate that the presented control methods can reduce the peak response larger than linear control, and it has control performance equivalent to bang-bang control.

  • PDF

Robust control of positioning systems with a bang-bang actuator (뱅-뱅 액츄에이터를 가진 위치 제어계의 강인 제어)

  • Choe, Jin-Tae;Kim, Jong-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.257-263
    • /
    • 1996
  • 본 논문에서는 기계적 위치 제어계에서 다단계 뱅-뱅 액츄에이터의 비선형성에 의한 목표 위치에서의 리미트 사이클을 방지하는 제어방법을 제안한다. 다단계 뱅-뱅 액츄에이터의 선형화된 모델인 기술함수를 이용하여 비선형성을 보상한다. 강인성을 확보하기 위해 루프 형성 기법에 의한 H/sub .inf./ 제어기가 설계된다. 제안된 제어방법은 기존의 선형제어기보다 비선형성이 보상되어 사역대가 작아지므로 최소 제어 가능 구간을 줄일 수 있다. 1축 위치 제어계의 실험을 하여 제안된 제어방법이 리미트 사이클을 줄이고 제어정도를 향상 시키는데 유효함을 입증하였다.

  • PDF

Design of GA(Genetic Algorithm) based Fuzzy Logic Controller for the control of flexible satellite structural system (유연성을 고려한 인공위성의 자세제어를 위한 GA 튜너와 퍼지제어기 설계)

  • Kim, Min-Sung;Choi, Wan-Shik;Oh, Hwa-Suk;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.160-165
    • /
    • 1996
  • Nonlinear Attitude Dynamic Equation for fleable-body satellite is drived and confirmed the effect of flexible body. GA based Fuzzy Logic Controller is designed. Also, Bang-bang controller is designed for compare the performance, Fuzzy controller chows much batter result then those by using of Bang-Bang controller.

  • PDF

Linearization Technique for Bang-Bang Digital Phase Locked-Loop by Optimal Loop Gain Control (최적 루프 이득 제어에 의한 광대역 뱅뱅 디지털 위상 동기 루프 선형화 기법)

  • Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.90-96
    • /
    • 2014
  • This paper presents a practical linearization technique for a wide-band bang-bang digital phase locked-loop(BBDPLL) by selecting optimal loop gains. In this paper, limitation of the theoretical design method for BBDPLL is explained, and introduced how to implement practical BBDPLLs with CMOS process. In the proposed BBDPLL, the limited cycle noise is removed by reducing the proportional gain while increasing the integer array and dither gain. Comparing to the conventional BBDPLL, the proposed one shows a small area, low power, linear characteristic. Moreover, the proposed design technique can control a loop bandwidth of the BBDPLL. Performance of the proposed BBDPLL is verified using CppSim simulator.

High Speed Control of a Switched Reluctance Motor Using a Leading Angle Manipulation (스위칭각 조정방식에 의한 SRM의 고속 제어기 설계)

  • Yeo, Hyeong-Gee;Lee, Sang-Lak;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.3-5
    • /
    • 1994
  • The SRM can be operated on the high speed range in which the back-emf is greater than the DC link voltage. However, the phase current of the SRM should be controlled through the selection of an exciting angle since it can not be controlled by a chop of the DC link voltage in the high speed range. In this paper, a PI and a bang-bang controller are employed in order to control the speed of the SRM and the leading angle of the SRM is adapted as a control input. The performances of two controllers are evaluated by computer simulation. The results show that the bang-bang controller is more attractive than the PI controller in the cost and performance aspects.

  • PDF

A Study on the Applicability of Adaptive Bang-Bang Control Algorithm for the Vibration Control of Multi-DOF Structure under Unexpected Large Earthquakes (과도한 기진력을 받는 다자유도계 구조물의 진동 제어를 위한 적응형 뱅뱅 제어 알고리듬의 유용성에 관한 연구)

  • 임채욱;정태영;문석준
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • 구조물이 과동한 기진력을 받을 때에 구조물의 진동 제어를 위하여 적응형 뱅뱅 제어 알고리듬이 저자들에 의해서 제안된 바 있으며, 이 제어 알고리듬을 1자유도계의 시험 구조물에 적용하여 제어 성능을 실험적으로 확인하였다. 본 논문은 이의 연장으로서 제안된 적응형 뱅뱅 제어 알고리듬을 최상층에 유압식 농동질량 감쇠기가 설치된 다자유도계의 시험 구조물에 적용하여 이의 유용성을 확인하였다. 이를 통하여 제안된 적응형 뱅뱅 제어 알고리듬은 제어 및 전체 구조계의 안전성이 보장되는 가운데 과도항 외부의 기진력을 받는 다자유도계의 구조물의 진동을 제어함에 효과적임을 확인할 수 있었다.

  • PDF