• Title/Summary/Keyword: bandwidth enhancement

Search Result 195, Processing Time 0.027 seconds

A Study on the Enhancement of Isolation of the MIMO Antenna for LTE/DCS1800/USPCS1900 Handset (LTE/DCS1800/USPCS1900 단말기용 MIMO 안테나의 격리도 개선에 관한 연구)

  • Cho, Dong-Ki;Son, Ho-Cheol;Lee, Jin-Woo;Lee, Sang-Woon;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.80-85
    • /
    • 2010
  • In this paper, a MIMO antenna is proposed for LTE/DCSl800/USPCSl900 handset applications. The proposed antenna is based on the IFA and its wide bandwidth is obtained by using a stagger tuning technique. To improve the isolation, a suspended line is connected to the shorting points in two antennas, and capacitors and inductors are added to the connected suspended line. Two identical antennas of which dimension is 2.8cc($40{\times}10{\times}7mm$) are mounted on the two end lines of the system ground plane($40{\times}60mm$). Analysis of the antenna performance and optimization is performed using CST Microwave Studio. The bandwidths are satisfied for LTE band class 13(746-787MHz), class 14(758-798MHz) and DCSl800/USPCSl900 band (1710-1990MHz). The isolations between two antennas are about -12dB for LTE band and -10dB for DCSl800/USPCSl900 band. And the radiation efficiency of each antenna is about for LTE band 33% and 45% for DCSl800/USPCSl900 band respectively.

Parametric Study of Slow Wave Structure for Gain Enhancement and Sidelobe Suppression (이득 증가와 부엽 억제를 위한 저속파 구조의 설계변수에 대한 연구)

  • Park, Se-Been;Kang, Nyoung-Hak;Eom, Soon-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1059-1068
    • /
    • 2016
  • This paper proposes slow wave structure(SWS) utilized to increase antenna gain of printed dipole antenna(PDA) and to suppress sidelobe level simultaneously, and makes sure of electrical characteristics of the antenna according to parameter variations of components of the slow wave structure. The printed slow wave structure which is composed of a dielectric substrate and a metal rods array is located on excited direction of the PDA, affecting the radiation pattern and its intensity. Parasitic elements of the metal rods are arrayed in narrow consistent gap and have a tendency to gradually decrease in length. In this paper, array interval, element length, and taper angle are selected as the parameter of the parasitic element that effects radiation characteristics. Magnitude and phase distribution of the electrical field are observed and analyzed for each parameter variations. On the basis of these results, while the radiation pattern is analyzed, array methods of parasitic elements of the SWS for high gain characteristics are provided. The proposed antenna is designed to be operated at the Wifi band(5.15~5.85 GHz), and parameters of the parasitic element are optimized to maximize antenna gain and suppress sidelobe. Simulated and measured results of the fabricated antenna show that it has wide bandwidth, high efficiency, high gain, and low sidelobe level.

Assessment of Safety Climate Metrics in Construction Safety Management (건설 안전관리를 위한 Safety Climate 평가요인별 중요도 분석 연구)

  • Han, Bum-Jin;Kim, Taehui;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.607-618
    • /
    • 2023
  • Pervasive research underscores the direct correlation between an enhanced safety climate and a marked reduction in accidents. The intricacies of safety climate are governed by three pivotal strata: organizational management, on-site operations, and the broader enterprise framework. Within an organizational context, sustaining optimal performance across these layers poses a considerable challenge, often attributable to the constraints of available managerial bandwidth. It becomes imperative, then, to conceive a phased enhancement blueprint for the safety climate. To orchestrate this blueprint with precision, a discerning understanding of the hierarchy of safety climate metrics is essential, which subsequently guides judicious managerial resource allocation. This investigation is anchored in elucidating the hierarchical significance of safety climate metrics through the Analytical Hierarchy Process(AHP). Implementing the AHP framework, both a questionnaire was disseminated and a subsequent analysis undertaken, culminating in the extraction of relative priorities of safety climate determinants. Consequent to this analysis, "workers' safety prioritization and risk aversion" emerged as the foremost dimension, holding a significance weight of 0.1900. Furthermore, within the detailed elements, "unwavering adherence to safety mandates amidst demanding operational constraints" ranked supreme, manifesting a weight of 0.6663. The findings encapsulated in this study are poised to be foundational in sculpting improvements at an institutional level and devising policies, all with the end goal of fostering an exemplar safety climate within construction arenas.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

H.264/SVC Spatial Scalability Coding based Terrestrial Multi-channel Hybrid HD Broadcasting Service Framework and Performance Analysis on H.264/SVC (H.264/SVC 공간 계위 부호화 기반 지상파 다채널 하이브리드 고화질 방송 서비스 프레임워크 및 H.264/SVC 부호화 성능 평가)

  • Kim, Dae-Eun;Lee, Bum-Shik;Kim, Mun-Churl;Kim, Byung-Sun;Hahm, Sang-Jin;Lee, Keun-Sik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.640-658
    • /
    • 2012
  • One of the existing terrestrial multi-channel DTV service frameworks, called KoreaView, provides four programs, composed of MPEG-2 based one HD video and H.264/AVC based three SD videos within one single 6MHz frequency bandwidth. However the additional 3 SD videos can not provide enough quality due to its reduced spatial resolution and low target bitrates. In this paper, we propose a framework, which is called a terrestrial multi-channel high quality hybrid DTV service, to overcome such a weakness of KoreaView services. In the proposed framework, the three additional SD videos are encoded based on an H.264/SVC Spatial Base layer, which is compliant with H.264/AVC, and are delivered via broadcasting networks. On the other hand, and the corresponding three additional HD videos are encoded based on an H.264/SVC Spatial Enhancement layer, which are transmitted over broadband networks such as Internet, thus allowing the three additional videos for users with better quality of experience. In order to verify the effectiveness of the proposed framework, various experimental results are provided for real video contents being used for DTV services. First, the experimental results show that, when the SD sequences are encoded by the H.264/SVC Spatial Base layer at a target bitrate of 1.5Mbps, the resulting PSNR values are ranged from 34.5dB to 42.9dB, which is a sufficient level of service quality. Also it is noted that 690kbps-8,200kbps are needed for the HD test sequences when they are encoded in the H.264/SVC Spatial Enhancement layer at similar PSNR values for the same HD sequences encoded by MPEG-2 at a target bitrate of 12 Mbps.