• Title/Summary/Keyword: bandpass filter

Search Result 573, Processing Time 0.02 seconds

Low-cost Prosthetic Hand Model using Machine Learning and 3D Printing (머신러닝과 3D 프린팅을 이용한 저비용 인공의수 모형)

  • Donguk Shin;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2024
  • Patients with amputations of both hands need prosthetic hands that serve both cosmetic and functional purposes, and research on prosthetic hands using electromyography of remaining muscles is active, but there is still the problem of high cost. In this study, an artificial prosthetic hand was manufactured and its performance was evaluated using low-cost parts and software such as a surface electromyography sensor, machine learning software Edge Impulse, Arduino Nano 33 BLE, and 3D printing. Using signals acquired with surface electromyography sensors and subjected to digital signal processing through Edge Impulse, the flexing movement signals of each finger were transmitted to the fingers of the prosthetic hand model through training to determine the type of finger movement using machine learning. When the digital signal processing conditions were set to a notch filter of 60 Hz, a bandpass filter of 10-300 Hz, and a sampling frequency of 1,000 Hz, the accuracy of machine learning was the highest at 82.1%. The possibility of being confused between each finger flexion movement was highest for the ring finger, with a 44.7% chance of being confused with the movement of the index finger. More research is needed to successfully develop a low-cost prosthetic hand.

A Study of Q$_P^{-1}$ and Q$_S^{-1}$ Based on Data of 9 Stations in the Crust of the Southeastern Korea Using Extended Coda Normalization Method (확장 Coda 규격화 방법에 의한 한국남동부 지각의 Q$_P^{-1}$, Q$_S^{-1}$연구)

  • Chung, Tae-Woong;Sato, Haruo;Lee, Kie-Hwa
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.500-511
    • /
    • 2001
  • For the southeastern Korea aound the Yangsan fault we measured Q$_P^{-1}$ and Q$_S^{-1}$ simultaneously by using the extended coda-normalization method for seismograms registered at 9 stations deployed by KIGAM. We analyzed 707 seismograms of local earthquakes that occurred between December 1994 and February 2000. From seismograms, bandpass filtered traces were made by applying Butterworth filter with frequency-bands of 1${\sim}$2, 2${\sim}$4, 4${\sim}$8, 8${\sim}$16 and 16${\sim}$32 Hz. Estimated Q$_P^{-1}$ and Q$_S^{-1}$ values decrease from (7${\pm}$2)${\times}$10$^{-3}$ and (5${\pm}$4)${\times}$10$^{-4}$ at 1.5 Hz to (5${\pm}$4)${\times}$10$^{-3}$ and (5${\pm}$2)${\times}$10$^{-4}$ at 24 Hz, respectively. By fitting a power-law frequency dependent to estimated values over the whole stations, we obtained 0.009 (${\pm}$0.003)f$^{-1.05({\pm}0.14)$ for Q$_P^{-1}$ and 0.004 (${\pm}$0.001)f$^{-0.75({\pm}0.14)$) for Q$_S^{-1}$, where f is frequency in Hz.

  • PDF

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.