• Title/Summary/Keyword: band-limited channel

Search Result 79, Processing Time 0.023 seconds

Performance Analysis of OFDM/QPSK-DMR System Using Band-limited Pulse Shaping Filter over the Microwave Channel (Microwave 채널 환경에서 대역 제한 필터를 적용하는 OFDM/QPSK-DMR 시스템의 성능 분석)

  • Ahn, Jun-Bae;Yang, Hee-Jin;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.384-388
    • /
    • 2003
  • In this paper, we have proposed a OFDM/QPSK-DMR(Orthogonal frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio)system using BL-PSF(Band-limited pulse shaping filter) over the Microwave channel. In the proposed DMR system, STS-1(51.84 Mbps) of SONET(Synchronous Optical NETwork) is first modulated by OFDM/QPSK symbol and used Band-limited pulse shaping filter. The advantage of the proposed DMR system is to simplify system complexity and increase IFFT/FFT block use-efficiency. The system performance of single carrier and OFDM systems is already proved that those of DMR systems have the same performance over AWGN(Additive White Gaussian Noise) channel environment. Therefore, the system is analyzed between proposed OFDM/QPSK-DMR and single carrier DMR systems and simulated by BER performance and Signature curve over Microwave channel environment. Simulation result is that the proposed system performances are approaching to the performance of single carrier DMR system as the number of Sub-carriers increasing.

  • PDF

Uniform Fractional Band CAC Scheme for QoS Provisioning in Wireless Networks

  • Rahman, Md. Asadur;Chowdhury, Mostafa Zaman;Jang, Yeong Min
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.583-600
    • /
    • 2015
  • Generally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes.

A Pilot Symbol Based Coherent QAM Decoder for a Wireless Channel (파일럿 패턴을 이용한 무선 QAM 송수신 기술 연구)

  • Kim, Han-Il;Han, Jae-Choong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.400-405
    • /
    • 2001
  • Quadrature Amplitude Modulation(QAM) is well known a bandwidth efficient modulation scheme. However, its use for mobile communications has been limited due to noise and signal distortion. Recently, the QAM scheme is emerging as a new modulation scheme for a band-limited wireless system. In this paper, we propose an iterative decoding algorithm assuming QAM signal for a narrow-band mobile channel. The Algorithm is based on the EM(Expectation Maximization) Algorithm, and the performances of the proposed decoder are assessed using computer simulation. The simulation results show that the proposed decoder perform better compared to that of other schemes.

  • PDF

An efficient punctured-coded TCM for the mobile satellite channel (이동 위성 채널에서 효율적인 Punctured TCM 방식)

  • 박성경;김종일;홍성권;주판유;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2063-2076
    • /
    • 1996
  • In this thesis, in order to apply a punctured convolutional codes to the trellis coded modulation(TCM), an efficient punctured trellis coded modulation(PTCM) based on the decomposition of the metric into orthogonal components is presented. Also, a simulation is performed in an additive white Gaussian noise(AWGN) and a rician fading channel modeling the mobile satellite channel. The PTCM combines punctured convolutional coding with MPSK modulation to provide a large coding gain in a power-limited or bandwidth-limited channel. However, in general the use of the punctured convolutional code structure in the decoder results in a performance loss in comparison to trellis codes, due to difficulties in assigning metrics. But, the study shows no loss in performance for punctured trellis coded MPSK in comparison to TCM, and what is more, the punctured convolutional codes results in some savings in the complexity of Viterbi decoders, compared to TCM of the same rate. Also, the results shows that the punctured trellis coded .pi./8 shift 8PSK is an attractive scheme for power-limited and band-limited systems and especially, the Viterbi decoder with first and Lth phase difference metrics improves BER performance by the mobile satellite channel.

  • PDF

Performance Analysis of OFDM/QPSK-DMR System Using One-tap Adaptive Equalizer over Microwave Channel Environments (Microwave 채널 환경에서 단일적응등화기를 이용하는 OFDM/QPSK-DMR 시스템의 성능 분석)

  • 안준배;양희진;조성언;오창헌;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.517-522
    • /
    • 2004
  • In this paper, we have analyzed the performance enhancement of Orthogonal Frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio(OFDM/QPSK-DMR) system using Band Limited-Pulse Shaping Filter(BL-PSF) over microwave channel environments. For performance enhancement, the one-tap adaptive equalizer is adopted in the OFDM/QPSK-DMR system and than both BER and signature curve performance are compared with those of single carrier DMR system. Computer simulations confirm that the OFDM/QPSK-DMR system using 16 sub-carrier increase the fade margin about 2 dB over microwave channel environments and that of performance using one-tap adaptive equalizer is highly increased the fade margin as the number of sub-carriers is larger.

Transmission Performance of Half-Symbol-Rate-Carrier Offset QPSK Modulation in Band-limited Channels

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.152-156
    • /
    • 2009
  • This paper examines the BER performance of the recently proposed half-symbol-rate-carrier (HSRC) offset quadrature phase-shift-keying (OQPSK) receiver for high-speed data communication. A modified demodulation technique using a bit-time period signal integration, the bit-error-rate (BER) performance of the HSRC-OQPSK signal improves more than 4dB compared to that of a demodulation technique using a symbol-time period integration. This paper also examines the BER performance of modified demodulation with various band-limited channels modeled using low-pass filters, and the three different data-rate systems are simulated and compared with the performance of the system using the conventional demodulation technique.

Resource Allocation in Full-Duplex OFDMA Networks: Approaches for Full and Limited CSIs

  • Nam, Changwon;Joo, Changhee;Yoon, Sung-Guk;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.913-925
    • /
    • 2016
  • In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency band. Due to the complexity of self-interference cancellation techniques, only base stations (BSs) are expected to be full-duplex capable while user terminals remain as legacy half-duplex nodes in the near future. In this case, two different nodes share a single subchannel, one for uplink and the other for downlink, which causes inter-node interference between them. In this paper, we investigate the joint problem of subchannel assignment and power allocation in a single-cell full-duplex orthogonal frequency division multiple access (OFDMA) network considering the inter-node interference. Specifically, we consider two different scenarios: i) The BS knows full channel state information (CSI), and ii) the BS obtains limited CSI through channel feedbacks from nodes. In the full CSI scenario, we design sequential resource allocation algorithms which assign subchannels first to uplink nodes and then to downlink nodes or vice versa. In the limited CSI scenario, we identify the overhead for channel measurement and feedback in full-duplex networks. Then we propose a novel resource allocation scheme where downlink nodes estimate inter-node interference with low complexity. Through simulation, we evaluate our approaches for full and limited CSIs under various scenarios and identify full-duplex gains in various practical scenarios.

Performance A Analysis of OFDM/QPSK-DMR System Using BL-PSF over Microwave Channel Environments (Microwave 채널환경에서 BL-PSF를 적용하는 OFDM/QPSK-DMR 시스템의 성능분석)

  • Ahn, Jun-bae;Yang, Hee-jin;Oh, Chang-heon;Cho, Sung-joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1279-1288
    • /
    • 2004
  • In this paper, the DMR(Digital Microwave Radio) system-based OFDM(Orthogonal Frequency Division Multiplexing) scheme in microwave channel environments has been proposed and system performances have been evaluated. The existing single carrier DMR system has a complex system structure due to using high-level QAM(Quadrature Amplitude Modulation) modulation scheme and so charmel capacity is limited by sensitive effects from fading. Therefore, in the proposed DMR system, it uses that the OFDM scheme for enhancement of fading distortion and also uses that the band-limited pulse shaping filter instead of windowing for no additional data such as GI/GB and for using efficient of IFFT/FFT block. The performance of OFDM/QPSK-DMR system and single carrier DMR system are analysed by computer simulation using two-ray model under the microwave channel environments The computer simulation results confirm that the fade margin of the proposed OFDM/QPSK-DMR system is highly increased as the number of sub-carriers is larger.

Decision Feedback Doppler Adaptive Band-Limit Algorithm for Maximum Doppler frequency Estimation (속도 추정 시 부가 잡음의 영향을 억제하기 위한 결정 궤환 적응형 대역 제한 방법에 대한 연구)

  • 박구현;한상철;류탁기;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1111-1117
    • /
    • 2003
  • The maximum Doppler frequency, or equivalently, the mobile speed is very useful information to optimize the performance of many wireless communication systems. However, the performance of a maximum Doppler frequency estimator is limited since it requires an estimate of the signal-to-noise ratio (SNR) of the channel environment. In this paper, the improved method for the maximum Doppler frequency estimations based on the decision feedback Doppler adaptive band-limit (DF-DABL) method is proposed. To reduce the effect of additive noise, the proposed algorithm uses a novel Doppler adaptive band-limit (DABL) technique. The distortion due to the additive noise is drastically removed by the proposed DF-DABL method. Especially, the DF-DABL method does not need any other channel information such as SNR.

Performance Evaluation of Access Channel Slot Acquisition in Cellular DS/CDMA Reverse Link

  • Kang, Bub-Joo;Han, Young-Nam
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.16-27
    • /
    • 1998
  • In this paper, we consider the acquisition performance of an IS-95 reverse link access channel slot as a function of system design parameters such as postdetection integration length and the number of access channel message block repetitons. The uncertainty region of the reverse link spreading codes compared to that of forward link is very small, since the uncertainty region of the reverse link is determined by a cell radius. Thus, the parallel acquisiton technique in the reverse link is more efficient than a serial acquisition technique in terms of implementation and of acquisition time. The parallel acquisition is achieved by a bank of N parallel I/Q noncoherent correlator are analyzed for band-limited noise and the Rayleigh fast fading channel. The detection probability is derived for multiple correct code-phase offsets and multipath fading. The probability of no message error is derived when rake combining, access channel message block combining, and Viterbi decoding are applied. Numerical results provide the acquisition performance for system design parameters such as postdetection integration length and number of access channel message block repetitions in case of a random access on a mobile station.

  • PDF